
Application of

Binary Space Partitioning Trees to

Geometric Modeling and Ray-Tracing

A Thesis

Presented to

The Faculty of the Division of Graduate Studies

by

William Charles Thibault

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Information and Computer Science

Georgia Institute of Technology

September 1987

Copyright c 1987 by William C. Thibault. All rights reversed.

ii

ACKNOWLEDGE:MENTS

I would like to thank Bruce Naylor giving me enough freedom to keep things

interesting while providing the guidance to make the work productive. Thanks are also due

to the Computing Systems Research Lab at AT&T Bell Laboratories for supporting much of

the implementation work. Chris Morgan provided many helpful comments on the draft. The

people who helped to keep me sane enough to complete the degree are also to be thanked.

Listing the contributions made by each person would only trivialize them. So, thanks go to

my parents, Roy Lov ell , Sarah Flynn, Dick and Lynn Mays, Geronimo and Diane Teer,

Marsha Brown, Martin and Susan McKendry , Rachael Liss, Mike Merritt, Laurie Hodges

Reuter, Carol Kilpatrick, Danny Lunsford, and the girls at the Clermont Lounge.

TABLE OF CONTENTS

ACKNOWLEDGMENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES.

SUMMARY

Chapter

I. Introduction.
Solid Modeling
Polyhedra. .
Set Operations
Geometric modeling systems
Geometric Search
Outline of Thesis

U. Past Work in Geometric Modeling
RepresentationofSolids. . . .
Representations for Interactive Solid Modeling
Set Operations
Geometric Search

m. Representing Polyhedra with BSP trees
Notation and Definitions.
Rendering..
Classification algorithms.
Generating the boundary of a labeled-Ieaf BSP tree
Constructing BSP trees from boundary representations
Metric properties
Discussion.

IV. Set Operations
Concepts Relating to the Algorithms.
Algorithms Using the BSP TreeBoundaries.. . . .
Set Operations on BSPTrees

V. Ray-Tracing.. . . .
Ap)'lying Space Partitioning to Ray-TracingPreviousWork.
The BSPTree Ray-TracingAlgorithm
Ray-TracingofPolyhedra. . . .
Using BSP Trees in the Ray-tracing of CSG Models

VI. Implementations
CSG evaluation
Incremental evaluation

ill

Page

ii

v

v-;; ;

.1X

".

1
1
4
6
7
9
9

11
11
17
19
25

28
28
31
33
39
41
45
48

51
52
54
68
80

86
86
89
91
95
96

98
98
112

iv

Ray-tracing
Construction of BSP Trees with Hyperplanes that do not Embed

Faces.

VU. Conclusions
Overview.
Directions for Future Work.

116

VITA

124

127
127
127

130
130

131

136

APPENDIX .
Finding the Intersection of a Line Segmentand a Hyperplane

BmLIOGRAPHY

LIST OF ILLUSTRATIONS

Figure

1. AnAmbiguousWireframeRepresentation..
2. OnePossibleGraphRepresentationforaCube.
3. Architectureofa GeometricModelingSystem.
4. TheRegularSetOperationsPreventDanglingEdges.
S. AnObjectDefinedwithaCSGTree.
7. A Boundary Representation of a Cube
8. Sweepinga QuadrilateralAlonga Curve.
9. ParametersDefinethePropertiesofthePrism.

10. An Octree of Depth 2
11. Ray-Casting to Solve a Set Operation.
12. Geometry of a 2-d Partitioning (a) and its BSP Tree (b)
13. illustrationofVisibilityPriority.
14. Algorithm to generate a Visible Surface Rendering from a Boundary-Augmented

BSPTree. .
15. AlgorithmforPointClassification..
16. AlgorithmforLineSegmentClassification..
17. AlgorithmtoPartitionaPolygon.
18. Projecting a Representation of "/ = 0 onto Hv'
19. Algorithm to Generate a PolygonRepresenting the Sub-Hyperplaneof

Hv.. .
20. AConvexSetanditsBSPTree.
21. Algorithm to Build a BSPTree from a Boundary Representation. . .
22. AconcavesetanditsBSPtree.
23. ExampleofExpressionSimplification..
24. AlgorithmforIncrementalSetOperations..
25. ExampleofanIncrementalSetOperation..
26. AnExampleofCSGEvaluation..
27. AlgorithmforCSGEvaluation..
28. InfOut Testing in 2D .
29. InfOut Testing in 3D .
30. BSPTreeBefore(a)andAfter(b)Reduction..

v

Page
3

5

8

12

13

14

15

16

18

20

29

32

33

35

36

38

40

40

43

44

45

54

S6

59

61

63

65

66

67

31. TheResultofIncrementalEvaluation.
32. 3DGeometryof ObjectsA andB
33. PolygonsLyingintheFrontPlane.
34. Resultof2Dglueoperation..
35. Examplesof1Dglueoperation..
36. Fragments of the Boundary Remaining After Glueing
37.AIDBSPTree. .
38. AlgorithmforBoundaryMinimization..
39. Adjacent, Collinear Edges in Different Sub-Hyperplanes
40. CaseAnalysisforBSPTreeSplitting..
41.AlgorithmtoSplitaBSPTree.
42. Sub parts Generated in Case 3
43. Sub parts Generated in Case 4
44. lliustrationoftheBasicsofRay-Tracing.
45. ARayIntersectinga Non-ConvexPartition.
46. AlgorithmtoRay-Tracea ScenePartitionedwitha BSPTree.
47. SegmentingaRay. .
48. A Problem to Be Aware Of
49. AnExampleoftheCSGObjectDescriptionLanguage.
SO.TestObject'Clutchplate':8Primitives,158Polygons.
51. TestObject'Bracket':7Primitives,106Polygons.
52. Test Object 'Brush': 7 Primitives, 49Polygons..
53. CPUSecondsvs. w,plit. .
54. Nodes in BSPTree vs. w,plit
SS. Height of BSP Tree vs. w,plit
56. Number of Boundary Polygons in BSP Tree vs. w,plit
57. Two Different BSPTrees Describingthe 'Clutchplate'
58. Two BSP Trees Describing the 'Brush'
59. Ray-Traced Clutch plate .
60.Ray-TracedHead. .
61. New York World's Fair .
62. Shuttle Mold .
63. AutomataforEvaluatingIDSetOperations.
64. BSP Trees Built Using (a) Build_BSPT, and (b) the Median-Cut

Algorithm.. .

vi

70

73

74

75

76

76

78

79

80

81

83

84

84

87

88

92

93

94

99

103

104

105

106

108

109

110

110

112

118

119

120

122

123

125

65. A PolyhedralApproximationtoa SphereandItsBSPTree.

vii

126

LIST OF TABLES

Figure

1. Dispositions of Faces Based on Set Operation
2. ExpressionSimplificationRules.
3. Handlingthe Terminationof Recursionin IncrementalEvaluation.

4. SemanticsoftheGlueOperator..
5. Run Times for Ray-Tracing an Unpartitioned Scene versus a Scene Partitioned

withaBSPTree. .

t;;;

Page
22

57

58

71

120

ix

SUMMARY

The Binary Space Partitioning Tree (BSP Tree) is a binary tree used to represent an

organization of continuous space by recursive subdivision. The BSP tree was initially

introduced to organize a set of polygons so that visible surface renderings could be produced

from an arbitrary viewing position. This thesis extends the use of the BSP tree in two ways.

The first, constituting the bulk of the work, uses the BSP tree to model polyhedral solids. A

number of algorithms relating to this representation of a polyhedral set arc introduced:

determining the boundary of the set, determining volume and center of mass, evaluating set

operations (union, intersection, difference), classification of points, line segments, and

polygons with respect to the set, constructing the BSP tree from the boundary of the set, and

constructing a boundary representation of a set represented by a BSP tree.

The BSP tree provides a unified approach to the basic problems encountered in constructing

an interactive geometric modeling system. These are: representing polyhedra, rendering,

geometric search, property calculation, and set operation evaluation. In previous work, these

issues have been addressed with largely independent and unrelated algorithms. By solving

these problems with a set of closely related algorithms based on the BSP tree, the task of

constructing such a system is made easier.

The other new use for the BSP tree discussed is its use in ray-tracing. Ray-tracing can

produce very realistic images, but is plagued by 'the requirement of large amounts of

computation. The problem of finding the closest intersection a ray with a collection of

objects, the basic operation in ray-tracing, is essentially a searching problem. The BSP tree is

used to organize the objects so that the search can be made efficient.

1

CHAPTER I

Introduction

Pleased to meet you. Hope you
guessed my name.

- Rolling Stones

Computer Graphics deals with techniques for automatically drawing pictures of objects

that are represented inside the computer, as well as the interactive design of such objects.

Geometric Modeling is concerned with a wider range of properties of these objects: volume,

area, center of mass, interference (i.e., whether two objects intersect), finite element

analysis, etc. Applications of these techniques range from the purely aesthetic, as in art,

advertisement, and entertainment, to the mundane, as in the computer-aided design of

appliances, buildings, and weapons. This thesis will address problems in both realms.

The work centers on the use of the Binary Space Partitioning (BSP) Tree, presented

in Chapter m. The thesis shows how the BSP tree can be used for two basic purposes. One

concerns its use in reducing the amount of computation required to produce realistic images

containing reflections, shadows, and transparent objects using the ray-tracing technique

(Chapter V). The other emphasis is on the modeling of solid objects. Algorithms for

defining solids (Chapter ill) and modifying them with the Boolean operations (union,

intersection, and difference) (Chapter IV) are given. The viability of the techniques is

demonstrated through implementation work (Chapter VI).

Solid Mode1in~

The recent development of geometric modeling as an identifiable field has been

motivated in large part by the emergence of Computer Aided Design and Manufacturing

2

(CAD/CAM) as an effective tool for improving productivity in manufacturing. Other, more

abstract domains have also been modeled geometrically, such as statistical

distributions[Bent79] and database schedules[Yann79].

Much of the work in the modeling of geometric objects with computers has been

motivated by applications in manufacturing and engineering. A number of TLAs (Three

Letter Acronyms) have also been generated: CAD (Computer Aided Design), CAM

(Computer Aided Manufacturing), CAE (Computer Aided Engineering), CIM (Computer

Integrated Manufacturing). Some of the earliest systems, among the most widely used today,

use the computer and its graphical display capabilities to manage creation and maintainance

of technical drawings such as blueprints and schematics. Commercially available systems are

now available that allow a designer to specify the shape of an object and view computer-

generated renderings of it. This data can then be used to control automated cutting and

milling machines that cut the object from a piece of stock material. For the design of

electronic equipment, tools can create printed circuit boards and VLSI layouts from

schematics or higher-level specifications such as algorithms. When designing a building, the

architect can automatically generate views of how the building will look from arbitrary

viewing positions. This can be used to generate animated sequences simulating what a person

would see when walking through or around the building.

Blueprints of three dimensional objects, consisting of several "wireframe" projections,

are a poor representation for most automated processes, such as determining if a given point

lies within the object. Automatic conversion from blueprints to more useful representations

is made difficult because ambiguities are possible in wireframes. These ambiguities are

usually easy for a human to resolve, often passing unnoticed. Figure 1 shows an ambiguous

object: if we interpret the object as having a hole, in which direction does the hole pass

through the object? Systems for automatic wireframe (blueprint) interpretation usually rely

on the operator to resolve ambiguities. Blueprints, however, remain an important

3

Figure 1. An Ambiguous Wircframe Representation

communication tool among humans.

The term solid modeling is used to refer to the mode ling of "realizable" solids, i.e.,

objects that have a 3-dimensional extension in space (volume). The objects modeled by

geometric modeling systems are often manufactured parts. 3-dimensional specification of

objects can be made directly by interaction with graphical displays, with blueprint-like 2-d

diagrams, or with special purpose languages. Once specified, the computer can determine

the answer to various queries about the object, such a volume, moments of inertia, and

surface area, as well as generating renderings of the object. With such a system, the

operator can iteratively modify the object to better meet his design goals, without ever

constructing physical models or prototypes.

4

Polyhedra

This section discusses previous work in the representation of polyhedra. For our

purposes, polyhedra are solids whose boundaries are planar polygons. Boundary

representations of polyhedra are often used in solid modeling, largely due to the fact that

most visible surface algorithms require polygons as input. Also, polyhedra are described by

linear equalities and inequalities, which allows for easily computed solutions to many

problems, making them attractive for computer implementation. This has been exploited in a

number of graphics workstations, such as the Silicon Graphics IRIS. These machines

support, in hardware, transformation and clipping of polygons, making them effective for

interactive use.

Polyhedra have been studied since the beginning of the Western Tradition. The so-

called "Platonic solids" consisted of the regular 3-dimensional polyhedra: tetrahedron, cube,

octahedron, dodecahedron, and icosahedron. These are the only regular polyhedra possible

in 3-dimensions; a fact which so captured the imagination that they became symbolic of the

five consituents of all existance: fire, earth, air, water, and ether. The astronomer (and

astrologer) Johannes Kepler spent years trying to descibe heavenly motions in terms of

nested, concentric spheres placed in such a manner that their interstices were defined by these

five polyhedra (it didn't work).

Euler first defined the relationship between the numbers of vertices, edges, and faces

of a polyhedron with the formula: v + / - t! = 2. This was later extended to handle

multiple polyhedra, polyhedra with "handles" or "through holes" and polyhedra with faces

that have holes: v + / - t! = 2(b - g), where g is the genus (the number of passages or

through holes), and b the number of disjoint bodies (objects or internal cavities). This is

useful, as it provides a necessary condition for a polyhedron to be physically realizable.

When computers became available, the problem of representing a polyhedron in a

5

computer arose. Two basic types of representations have been developed: boundary

r~pr~s~ntations (B-reps), and 'Volum~tric r~pr~s~ntations.

Boundary representations enumerate the components of the boundary of the

polyhedron, its faces, edges, and vertices. It can include purely geometric information, the

position and orientation of each element of the boundary, or may also include connectivity

(topological) information. A natural representation for this topological information mirrors

the connections between elements of the boundary of the polyhedron: each vertex is

associated (say, via pointers) with a some number of edges and faces, each edge is associated

with two vertices and two faces, each face is associated with some number of edges and

vertices (where the numbers of faces and vertices are equal). One can also order edges about

vertices, and vertices about faces. This information-rich data structure is called a "winged-

edge", topological, net, or graph representation.

Figure 2. One Possible Graph Representation for a Cube

(Figure 2.) The amount of information stored in the data structure should be sufficient for

the intended application.

Volumetric representations express the set in terms of simple primitive solids, where

each primitive is described by a simple characteristic function. Commonly used primitives

c I faces
d ' T 1 rh

g

I I !
edges

I
If

\N fk" !k' !'XV V VI
e

a b
\f\f vertices
a b c d e f g h

6

include linear halfspaces and axis-aligned cubes. For example, convex polyhedra can be

represented by a set of halfspaces whose intersection defines the polyhedron. Concave

polyhedra can be represented in terms of set operations on half-space primitives [Brai7S].

Set Operations

A convenient means of specifying complex objects is to combine a number of simple

primitives with the set operations union, intersection, and difference. A Constructive Solid

Geometry (CSG) representation is a binary tree in which the internal nodes represent one of

the (regularized) set operations union, intersection and difference; the leaves of the CSG tree

are primitive solids[Requ80, Mort8S]. The primitives commonly include the quadrics: sphere,

cone, cylinder, paraboloid, etc. To perform some geometric operation or query on the object

described by a CSG representation, the CSG tree itself can be used. This has the advantage

of using the representation actually specified by the user, and can provide the most accurate

result possible. Also, a single framework, ray-casting (which is described later in this

chapter), can be used for handling most operations. Ray-casting can handle a large class of

primitives, requiring a single operation to be supported for each primitive, that of

intersecting a line with the primitive.

The major drawback of using the CSG representation directly for answering

qeometric queries is that the result will usually require large amounts of computation. One

reason for this is that each such computation must determine the effects of the set operations.

Consider the problem of determining where a given point lies with respect to an object

represented by a CSG representation. A simple approach is to test the point to each

primitive, and then combine th~se results according to the set operations. This "combining"

step based on the set operations must be repeated for each point tested. Any query answered

by sampling the CSG representation, such as with a number of rays or points, will require

large amounts of computation.

7

Another problem with CSG representations involves using primitives described by

quadratic or higher-order polynomials: computations on such entities are inherently

computationally expensive. Also, non-linear polynomials of are not algebraically closed

under set operations. For instance, the intersection curve of two quadrics can be of degree 4.

To allow for more efficient generation of a number of different views of a CSG

expression, that representation can be converted into an approximate, polyhedral boundary

representation of the object. The problem of determining the boundary of the CSG

representation is then one of determining which faces (or portions thereof) belong to the

boundary. Once the bounding faces have been determined, the rendering algorithm need

only be concerned with which faces are visible, and need not determine which faces are

actually on the boundary.

Geometric modelin~ systems

Most real-world geometric modeling systems use at least two representations

[Requ83], allowing operations to be carried out with the most appropriate representation.

For example, initial specification may be made with a CSG tree, on quadric or tri-cubic

parametric primitives. For display, this can be converted into a polyhedral boundary

representation, and the boundary used with a conventional rendering algorithm.

Alteratively, if a high-quality rendering is desired, the CSG representation itself can be used

as input to a ray-tracing renderer. Figure 3 illustrates a ~ely system architecture.

The conversion from CSG to an approximate boundary representation consisting of

polygons is supported by most systems. This allows the use of "polygon engines," hardware

designed for rapid transformations and renderings of polygons. One scenario for the

interactive design process begins with the specification by the user of a CSG tree defining the

object. The CSG tree is then automatically converted to a polyhedral boundary

representation. Next, the user specifies various viewing operations and queries the system

8

object description
(textual) ,

translation
(CSG evaluation) I~

(

~

exact
rep.

(?J

high-quality
rendering

converSIOn
algori thm

interactive

l
- Lrendering

interactive, ' '

modification f-'-'-

Figure 3. Architecture of a Geometric Modeling System

about various properties of the object. If the design is found lacking, the CSG tree can be

modified. Modification to the CSG tree requires another conversion to be performed, and

the process cycles. In an interactive setting, the CSG to boundary representation conversion

could be done many times, so the conversion must be fast. Also, a large number of different

views may be generated for the user to get a good sense of the spatial qualities of the object.

For example, an animation of a smooth rotation of the object is often helpful.

In another scenario, given a boundary representation, the user "tweaks" the object by

perturbing certain faces, edges, or vertices. This has the benefit of fast feedback, since the

displayable representation is being modified and no conversion is being done. However, it is

an open question as to how the result of such a modification can be mirrored in the CSG

tree[Rcqu83] .

9

Yet another scenario has the user modifying the object incrementally by applying an

additional set operation with a single primitive. A cylinder can be used to produce a number

of mounting holes via repeated application of a set difference operation, for example. The

user's actions can either modify the CSG tree, requiring conversion to be performed for

visual feedback of each operation, andlor the operation can be performed on the boundary

representation directly.

Geometric Search

Efficient algorithms on a collection of geometric entities, as is the case for all

algorithms, require a fast way to access the data describing them. Gt!omt!tricst!arch structurt!s

are data structures that organize geometric data for quick access.

When considering a set operation on two polyhedra, for instance, it must be

determined for each face of each polyhedron whether the two faces intersect. This is O(n 2) if

no geometric search structure is used. To acheive reasonable preformance, some sort of

geometric search structure must be supported in a geometric modeling system.

Outline of Thesis

Geometric modeling systems have suffered from having to use separate and unrelated

algorithms and data structures for various operations such as viewing, property calculation,

set operations, and geometric searching. This makes the systems large and complicated.

This thesis discusses how a single data structure, the Binary Space Partitioning tree,

or BSP tree, can be used to perform many of the operations required for geometric modeling

in a unified framework. The first set of algorithms, constituting the bulk of the work,

applies the BSP tree to geometric modeling of polyhedra. Techniques are presented for the

definition and interactive modification of 3-dimensional polyhedral solids via the set

operations union, intersection, and difference. The resulting representation is shown to be

effective for visible surface renderings, property calculations, and for further modification

10

with set operations. The BSP tree provides a means to search space efficiently, a property

that is useful for these operations. The anticipated uses of these techniques are in the areas

of Computer Graphics, Computer Aided Design (CAD) and Robotics. Most of the

techniques presented are applicable in any dimension, and may find application in areas that

make use of non-convex polyhedra in higher dimensions, such as Operations Research.

Ray-tracing is the other use for BSP trees which is discussed. Ray-tracing uses the

ideas of geometric optics to produce realistic images by tracing rays of light through a scene

to simulate shadows, reflection, and refraction. Although capable of producing impressive

images, the technique is computationally expensive. Techniques are presented that use the

BSP tree to reduce a major aspect of this expense: the number of objects that must be tested

for intersection with a given ray. Also, ray-tracing of BSP tree representations of polyhedra

is discussed. These same algorithms can be used for ray-casting, a closely related technique

that is used for determining properties such as volume.

11

CHAPTER IT

Past Work in Geometric Modeling

Let attention be at a place
where you are seeing some past
happening, and even your form,
having lost its present
characteristics, is transformed.

- from the Vigyana Bhairava Tantra

Representation of Solids

Several techniques for specification, representation, and modification of solids have

been used or proposed. Most are dependent on the particular representation being used.

Existing representation schemes can be classified as follows (after Requicha [Requ80]):

1. Cell Decomposition -- The object is decomposed into a number of cells whose interiors

do not intersect. In the simplest sort of decomposition, spatial enumeration, the object

is represented as a list of disjoint cells of fixed size arranged in a regular grid. (In 3-d,

the only possible decomposition of space into equal-sized, regular polyhedra uses

cubes[Coxe63]. Decompositions using two distinct regular polyhedra, such as

tetrahedron and octahedron, are also possible [Full7S].) This can require a large

amount of storage. A more general decomposition allows the cells to be of different

shapes and sizes. For example, any polyhedron may be decomposed into a set of

disjoint tetrahedra. The octree and BSP tree representations (described below) produce

cell decompositions, in which the cells are of differing sizes and are organized by a

hierarchical tree structure.

2. Constructive Solid Geometry (CSG) -- Objects are described by set-theoretic

expressions on a collection of primitive solids (cubes, cones, etc.). In point-set

12

r .A

AnB A n* B

Figure 4. The Regular Set Operations Prevent Dangling Edges

topological terms, these objects have non-empty interiors. Regular sets have been

proposed as a formalism for use in solid modeling [Requ78]. The approach serves to

insure that the results of set operations are solids. Briefly, the closure of a set consists

of the set together with its boundary. A set is regular if it is the closure of its

interior[Requ78]. Note that the concept of interior, and therefore, regularization, is

dependent on dimension: a line segment has a 1D interior, but it's interior in 2D is

empty. This implies that the 1D-regularization of a line segment is that line segment,

and the 2D-regularization of a line segment is empty. The regularized set operations

behave as the usual ones, but return the closure of the interior of the result.

Consider the 2D example of Figure 5-1. Polygons A and B have some boundary

points in common. The usual intersection operation n leaves a "dangling edge" that

that does not bound a 2D solid, and hence has no (2D) interior. The regularized

operation n. does not produce such an edge. The expression is usually stored as a

CSG tree, in which primitives are at the leaves and internal nodes represent set

13

A

u*

c /"
A -*

/"
B c

Pilure 5. An Object Defined with a CSG Tree

operations (union, intersection, and difference). This is a commonly used

representation. One reason for its popularity is the ease of textual specification. The

syntax of CSG expressions is similar to that of arithmetic expressions, and can be

described by simple grammars, making parsing easy. (Chapter VI describes an

implementation of such a parser using the UNIX tools yacc and lex.) The parsed

expression is often represented with a tree structure, and the term CSG tree is often

used.

Figure 6 shows an example of an object defined with a CSG tree. Another

14

feature of the CSG representation is that it permits a unified method for answering

queries: ray-casting [Roth82] (discussed below in Section "Set Operations"). This

permits the 3-dimensional problem to be reduced to a set of I-dimensional problems

that are easily solved. New primitives are easily added, since only the ray intersection

test must be implemented. However, a large number of such rays may be necessary.

3. Boundary Representations -- Another popular representation, a boundary representation

(or B-rep) defines a solid by its enclosing surfaces (planes, quadric surfaces, parametric

patches, etc.).

t 7L

L
+

7

Figure 7. A Boundary Representation of a Cube

Representing a solid by a set of polygons on its boundary is the representation used as

input to most algorithms to generate visible surface renderings (Figure 7).

15

The boundaries of a d-dimensional object are a set of (d-1)-dimensional

polyhedra, called faces. These can in turn by described by their (d-2)-dimensional

boundaries, continuing in this fashion until reaching OD, the vertices of the object.

Figure 8. Sweeping a Quadrilateral Along a Curve

4. Sweep Representations -- A solid is defined by the moving a 2-d or 3-d object through

space along some trajectory (Figure 8). Volumes of revolution can be defined by

rotating a 2-d cross-section about some axis.

5. Procedural Modeling -- This method defines several generic objects (e.g., cones,

spheres, prisms) and allows parametric specification of a particular instance. For

example, regular prisms could be specified with tuples of the form ("PRISM", M, N,

R), where M, Nand R are the length, number of sides, and radius of the prism,

respectively (Figure 9). A procedure specific to the class of object would be called with

the appropriate parameters whenever the object is queried. The difficulty with this

representation is that the algorithms to handle queries are difficult to write and are

specific to the particular class of object, making interactions between objects of different

16

6 sides
Prism (5, 6, 1)

Figure 9. Parameters Define the Properties of the Prism

types problematical. Recently, a framework for handling interaction between

procedural objects has been proposed [Ambu86]. Specific types of procedural objects,

those characterized as "recursive subdivision" schemes, were addressed. This includes

certain fractals [Four82] and parametric patches. Interactions based on spatial

proximity of different objects are addressed in an object-based model, by defining

certain operations that make use of the semantics of the shared subdivision scheme.

This can be used to make a surface of one type conform to (lie on) a surface of another

type: for example, a fractal model of a crinkled foil champagne wrapper is made to

conform to the neck of a bottle modeled with parametric patches.

The BSP tree representation presented in Chapter ID has the qualities of a cell

decomposition, as well as those of a boundary representation. It can also be considered as a

restricted form of CSG representation, in which each cell is described as the intersection of

half-spaces, and the entire object as the union of these cells.

17

Representations for Interactive Solid Modelini

In an interactive setting, fast user feedback requires that property calculations and

visible surface renderings can be done cheaply. For this reason, solids described with

computationally "expensive" surfaces are approximated by solids described with simpler

linear surfaces. This approximation is often used as a secondary representation. The two

most prevalent approaches are the octree and polyhedral boundary representations.

Detrees

The octree [Jack80, Meag82] represents a hierarchical cell decomposition. It is the 3-d

anologue of the quadtree [Same84]. At least one system [Requ83]) uses it as an auxiliary

representation, constructing it from a CSG representation and using it for interactive

operations. First, the representation is described.

The octree shares qualities with the spatial enumeration and cell decomposition

representations. It is an 8-way tree representing a regular, hierarchical partitioning of space.

(Figure 10) Each node of the tree corresponds to a cubical region of space, called a "onl.

The root node describes the cubical universe. Each leaf of the tree is assigned a value

describing the space in its region: "in" or "out" of the set being modeled. Each internal node

of the tree has eight children, corresponding to splitting the voxel into eight equal-sized

cubes. The children are ordered in a consistant fashion throughout the tree. The depth of

the octree determines' the size of the smallest voxel. The tree is constructed to a depth

deemed sufficient to provide an adequate approximation of the solid. The representation has

the advantages of simplicity, suitabilty to operations performed easily by computers (such as

integer division by 2 (right shift), comparison), and regularity. Algorithms for rendering

[Doct81] can easily generate multiple views of a given object. Rotation by ninety-degree

angles can be performed by reordering the children of each node [Jack80]. Volume

calculations are straightforward tree traversals. It seems best suited to representations of

0

000000000

000000000

18

1 1 1 1 1
1 I I I I

1 " 1--' ::>1---,-:
I" I I" 1 I"

,,1"---,-;1 ----
"I 1 " I" I-"'-- ---

1 1 I 1 I
1 I I 1
I
1 I 1..-
- --1. - ~ ---0--

I,,"

Figure 10. An Octree of Depth 2

CAT scans [Yau83].

complex, irregular objects such as human tissues reconstructed from digital data, such as

Its major drawback is the amount of storage required to approximate surfaces that do

not lie in "convenient" orientations, viz., nonplanar, not orthogonal to a coordinate axis or

not positioned at distances attainable by a small number of divisions by two. Hunter and

Steiglitz [Hunt79] show that the storage required is proportional to the surface area of the

object. Also, since the partitioning always occurs along planes orthogonal to the axes at fixed

positions, arbitrary rotations [Meag82] and translations [Jack80] require rebuilding the octree

for the object at the new orientation.

Later work [Carl85, Carl87,AyaI85, Nava86] extends the octree representation to

address some of these shortcomings. Instead of just two leaf types, in and out, the types

19

"vertex," "edge," and "face" are defined. These leaves are associated with a boundary

representation of the solid within the cell it represents. Although these extensions can reduce

the storage required and allow polyhedra to be represented exactly, the simplicity of the

representation is lost. We will see later (Chapter IV) that algorithms for set operations are

also complicated considerably.

The simplicity of the octree has motivated at least one hardware implementation of

viewing and set operation algorithms[John84).

Set Operations

When some operation is to be performed on a set described by a CSG tree, two

approaches can be taken. One is to perform the operation using the CSG tree itself, applying

the operation to the leaves directly, and for internal nodes, combining the results from its

subtrees based on the set operation at that internal node [Lee82,Athe83,Roth82). The other

approach is to first convert the CSG representation to one that can be worked with more

easily.

Ray-castini

By intersecting a ray with each primitive, the intersection of the ray and the object

can be determined by combining the resulting 1D intervals according to the set

operations[Roth82). (Figure 11.) By generating a number of parallel rays arranged in a grid,

a number of disjoint samples result. This reduces the 3D problem to a set of simpler 1D

problems. However, this is only an approximation, and a large number of rays must be

tested for an accurate result.

This method has the advantage of requiring only a single geometric operation to be

supported for each primitive, that of intersecting the primitive with a ray. This allows the

system to be easily extended with new primitives.

20

A rB

ray

A

B

An*B

AU*B

A -*B

Figure11. Ray-Casting to Solve a Set Operation.

When this is being used to generate visible surface renderings, the entire process must

by repeated for each new viewing position. Atherton [Athe83] has presented a hybrid visible

surface algorithm for polyhedral objects that mitigates this problem somewhat. It combines

the ray-casting technique with the classical scan-line algorithm [Fole83]. The rendering is

generated by considering each horizontal scan-line of the CRT raster. Ray-casting is used to

determine which surface is visible at places where the visibility may change, such as at the

intersection of two faces from different primitives. In regions where this does not change,

21

the linear nature of the polygons on the boundary allow a series of adjacent pixels to be

written all at once. Although this approach is more efficient than casting a ray for each

pixel, it shares that approach's drawback of requiring the entire process to be repeated for

each view generated.

Evaluatini Set Operations usini BoundaQ' Representations

The generation of several different visible surface renderings of a given object can be

made more efficient if only the boundaries of the actual object are considered. That is, if the

set operations are evaluated first, that work need not be repeated for each successive view.

For example, the boundary of a 3D object defined with set operations on quadric primitives

would consist of the 2D quadrics on the boundary, along with the iD curves descibing the

boundaries of these 2D surfaces. This is the approach taken in the GMSolid system

developed at General Motors [Sarr83], and the work of Levin [Levi79, Levi76]. The

resulting boundary is then used to generate hidden line renderings. Algebraic techniques can

be used to determine the intersection curves of quadratic surfaces (as in the aforementioned

systems), but for most higher-order surfaces, numerical techniques must be used.

The above approach has the drawback of requiring computation on non-linear

entities. Techniques that attempt to avoid this first construct piecewise-linear, approximate

(polyhedral) boundary representations of the primitives. The collection of faces of the

primitives contains the boundary of the result as a subset. Finding intersections of linear

faces (polygons) can be done with relatively inexpensive computations. The published

algorithms for this CSG-to-boundary conversion[Mant82,Requ85,Laid86] share the same

basic structure. Pairs of primitives combined with some set operation are considered,

producing a new boundary representation that can then be combined with some other

primitive, and so on, continuing until all primitives have been considered. First, intersections

of faces are found. These are used to split the affected faces. Then, the faces are classified

22

operation

TABLE 1. Dispositions of Faces Based on Set Operation
bdAn*intB bdAn*eXlB bdBn*intA bdBn*eXlA bdAn*bdB

AUB
AnB
A.B

discard

keep
discard

keep
discard

keep

discard

keep
keep

keep
discard
discard

same-keep, else discard
same-keep, else discard
same-.discard, else keep

as lying in the interior or exterior of the other primitive. Faces of the appropriate

classification (depending on the set operation) are kept, the others discarded. (Table 11.)

When faces of the two objects lie in the same plane and overlap, the orientation of the faces

("same" or "opposite") is used to determine which portions to keep.

An Example of an AI&orithm for Set Operations

One such algorithm is now presented. The purpose of this section is to illustrate,

using one of the relatively less complex of the published algorithms, how complex such an

algorithm can be. In [Laid86], an algorithm is presented that performs a regularized set

operation on two boundary representations of polyhedra (consisting of convex polygons),

resulting in a boundary representation of the resulting polyhedra. The algorithm first splits

any faces of either polyhedron that intersect the other polyhedron. This essentially requires

testing each face of one polyhedron to each face of the other. Bounding boxes are used to

quickly determine cases in which faces cannot possibly intersect. A bounding box gives the

minimum and maximum extent of the object (here, a face) in all dimensions, thereby

defining a box with axis-aligned sides. When the bounding boxes of two faces do not

intersect, the enclosed faces do not intersect. Each face that intersects a face of the other

polyhedron is split into subfaces that do not intersect the interior of the face of the other

polyhedron. This is done by an exhaustive case analysis (17 cases) of the ways in which two

faces may intersect. Vertices that lie on the boundary of both polyhedra are marked as such

(BOUNDARY), and all others as UNKNOWN. Faces that are coplanar with a face(s) of the

other polyhedron are marked SAME or OPPOSITE, according as the normal of the face is

parallel or anti-parallel to the face of the other polyhedron.

23

Once this has been done, the polygons that have at least one UNKNOWN vertex are

classified as lying in the interior or exterior of the other polyhedron. This is done by casting

a ray from the cent er of such a face through the B-rep of the other polyhedron, and counting

the number of times the ray intersects the boundary of the other polyhedron. If this number

is odd, the polygon lies in the interior of the polyhedron. An even number of intersections

indicates that the polygon lies in its exterior. If the ray does not intersect the other

polyhedron, the ray is "jiggled" by some random perturbation. The new ray is again tested

for intersection with the other polyhedron. This "jiggle-and-test" process is not guaranteed to

terminate, but the authors report that one jiggle is usually all that is required in practice.

This classification, IN or OUT, is given to each UNKNOWN vertex of the face.

Vertex connectivity information maintained in the boundary representation is then used to

propogate this classification to UNKNOWN vertices that are connected to the vertices of this

face. The propogation stops at BOUNDARY vertices, and therefore does not cross into

regions of the boundary that lie on the other side of the boundary of the other polyhedron.

The process of classification by ray casting and subsequent propogation of classification

continues until all UNKNOWN vertices are marked as IN or OUT. This propogation step

eliminates the need for many repititions of the expensive ray cast.

Once all vertices of a face have been classified, the polygon itself is classified. The

polygon's classification is that of any non-BOUNDARY vertex; these are ensured to all be of

the same classification by the initial splitting step. Polygons of the appropriate classification

are then maintained in the result; OUT and SAME polygons are retained for union, IN and

SAME for intersection, IN from one and OUT and OPPOSITE from the other for

difference.

This algorithm has several aspects that complicate its implementation. Handling the

splitting of polygons in 17 different ways is one such aspect. Others are the implementation

24

of the ray-test, and maintenance of connectivity relationships in a shared-vertex B-rep. Also,

the use of bounding boxes can cheaply eliminate from consideration certain non-intersecting

faces, but the lack of structure on the collection of boxes keeps intersection testing a O(n2)

operation: each face (or bounding box) of one object is tested against each face (or bounding

box) of the other object. Bounding boxes, although relatively easy to test for intersection,

often fit "loosely" around the bounded object, leaving a large amount of void space (space

inside the box that is not part of the bounded object). The larger the amount of void space,

the higher the probability that a positive test for box intersection does not indicate

intersection of the bounded objects.

The above algorithm only works for 3D polyhedra. Putnam and

Subrahmanyam[Putn86] present a technique that is independent of the dimension of the two

polyhedra. Their approach is to describe each DD object as an embedding hyperplane and a

set of (n-l)D objects that lie in this hyperplane and bound the object. This recursive

definition terminates at OD, the vertices. The algorithm is also recursive in dimension.

Although elegant and general, no consideration for reducing the n2 comparisons required in

each dimension is mentioned.

Set Operations on Octrees

Given two octrees in the same coordinate system, the set operation involves

traversing both trees in parallel. The root of each tree represents the cubical universe. All

children of the root correspond to the same regions for both trees. This is due to the strong

connection between the coordinate system and the placement of the partitioning planes of the

octree. When the set operation algorithm finds that one of the operand trees is a leaf, the

result tree for that region is either the tree rooted at the corresponding position of the other

tree, or a leaf. (In either case, it is also possible that the result has all of its leaves

complemented, replacing "empty" with "full," and vice-versa.) The simplicity of the

2S

algorithm suggests a straightforward hardware implementation.

In the "extended octree" schemes[Nava86,Carl87), a similar parallel traversal is done,

but the handling of leaves is more complex. Leaves of these extended octrees can contain a

B-rep of the object within the region. Techniques similar to those used for set operations on

B-reps must then be used. This complicates the algorithm significantly.

Geometric Search

The time and space complexity of several geometric searching problems have been

studied (e.g., [Prep8S,Bent79,Kirk83, Edah84]) , but the results are not directly applicable to

geometric modeling. This is due to the nature of the problems studied: the 'database' being

searched in these methods is usually a set of discrete points in n-dimensions, and the queries

are either O-d points or n-d orthogonal parallelipipeds. In a geometric mode ling system, the

sets considered are continuous (solids, lines), and the queries can have arbitrary geometry.

For example, a polyhedral representation of a robot arm might be used in the query, "Does

the robot arm intersect any other object in its environment?"

The problem of searching a set of ID values is well understood, having been the topic

of much work over the years. In the common case of searching a list of numbers ('find the

smallest entry greater than or equal to some value'), we can use the fact that there exists a

total ordering on numbers to construct, for example, a binary search tree. By comparing the

key (the value being searched for) to the value stored at an internal node of the tree, we can

eliminate from consideration all elements stored in one subtree. Higher-dimensional

techniques must use geometric properties to define ordering relations and searching

strategies.

Applying the divide-antI-conquer paradigm used in binary search trees to the problem

of search in an n-dimensional space requires the introduction of the notion of space

partitioning. The space in which a model lies can be partitioned into a set of subspaces by

26

geometric entities, called partitioning s~ts. These partitioning sets can be any surface that

partitions a space into two sets such that given any continuous curve connecting two points in

each of the partitions, that curve must intersect the surface. The objective is to reduce our

problem to asking questions about the objects in individual subspaces of the partition.

All previously published set operation algorithms that operate on boundary

representations are essentially similar, in that sets of faces corresponding to all classifications

of one object with respect to the other are generated, and then the appropriate ones kept and

the others discarded, based on the particular set operation being performed. The difficulty

with the algorithms of [Laid86] and [Requ8S], for example, is that each face of each object

must be tested for intersectiol1 with all faces of the other object.

Tilove[Tilo84] describes several methods of reducing the amount of this work. The

basic idea behind these and all such methods is to decompose the problem into subproblems

of restricted spatial extent. The restricted problems are simpler than the original. Also, it

seems that boundary-based algorithms are inherently complex, both conceptually and in

implementation.

One method proposed by Tilove for CSG evaluation is to restrict each subproblem to

the region occupied by some primitive in the CSG tree. In an initial pass, all primitives are

tested for pairwise intersection. This information is then used to "prune" the CSG tree

describing the region occupied by each primitive. If a primitive A lies entirely in the exterior

of a primitive B, then the position occupied by A in the CSG tree for the region occupied by

primitive B is replaced by a representation of the empty set. If A is indeed disjoint from B,

and is combined with someCSG subtree via the intersection operator (at A's parent), then

A's parent can be pruned, discarding A and its sibling subtree and replacing A's parent with

a representation of the empty set. (Although not mentioned by Tilove, a similar

simplification can be performed when a primitive lies wholly in the interior of another.

27

Figure SIMPLIFY in chapter IV summarizes these simplification rules.)

Another method described by Tilove is the use of a regular grid to define the

subproblems. This has the advantage of partitioning the problem into disjoint lubproblems.

Also, testing for intersection is made simpler by virtue of the regularity and orthogonal

orientation of the grid cells.

Mantyla and Tamminen [Mant83] describe a hierarchical structure to define

subproblems. They address the problem of evaluating a single binary set operation. In this

setting, the problem can be framed in terms of geometric searching. The faces of one object

are stored in a hierarchical data structure mirroring a hierarchical decomposition of space by

axis-aligned planes. Non-trivial subproblems , that is, those in which neither operand is

entirely in the exterior or interior, are identified by a geometric search of this data structure.

The "search key" consists of the faces of the other object in the set operation. Geometric

comparisons of these faces with the partitioning planes of the spatial decomposition are used

to direct the search through the tree. Instead of comparing each face of each object to each

face of the other, the comparison need only be made for the faces found to be in nearby

regions of space. Requicha states [Requ80] that any realistic mode ling system must provide

some sort of geometric search structure.

Once a boundary representation, consisting of a set of polygons, has been

determined, these can be used with anyone of a number of rendering algorithms. (See

[Roge8S] for a survey of such algorithms.)

28

CHAPTER ill

Representing Polyhedra with BSP trees

1 r~pr~s~nt that r~mark.

- CurlyJoe

The idea upon which the BSP tree is based was originally proposed by Schumacker

[Schu69]. The BSP tree was developed as a means of preprocessing polygonal models for

efficient solution to the visible surface problem by scan-conversion[Fuch80, Nay181, Fuch83],

and was later extended to ray-tracing [NayI86]. After formally introducing the BSP tree, we

discuss how it is used to model polyhedra. Several algorithms are then discussed. First, the

existing work on using the BSP tree for rendering is reviewed. Next, it is shown how the

BSP tree can be used for one type of geometric searching problem, that of classification of an

object with respect to the represented polyhedron, where the object is a point, line segment,

or polygon. The concepts introduced by these algorithms are then applied to the problem of

finding the boundary of a polyhedron represented by a BSP tree. Having shown how the

BSP tree can be used, techniques to build the BSP tree from a boundary representation of a

polyhedron are discussed. Finally, algorithms for computing the volume and center of mass

of the polyhedron represented by a BSP tree are given.

Notation and Definitions

A Binary Spac~ Partitioning tru (BSP tree) represents a recursive subdivision by

hyperplanes of d-dimensional space. (Hyperplanes are planes in 3-d and lines in 2-d.) An

example of a BSP tree in 2-d is given in Figure 12. In Figure 12(a), arrows indicate the

orientation of (or, the normal vector to) each partitioning line. Each such line is associated

with an internal node of the BSP tree in Figure 12(b). The right subtree of each internal

29

6

Figure 12. Geometry of a 2-d Partitioning (a) and its BSP Tree (b)

node represents the region of the plane lying to the side of the line pointed to by the arrow.

The left subtree represents the other side. For clarity, leaves are numbered to correspond to

the region each represents.

For a hyperplane H = {(xl' ..., xd)lalxl + ... + adxd+ad+l= O}, the halfspace

lying "in front of" H is H+ = {(xl' ..., xd)lalxl + ... + adxd+ ad+1> O},and the halfspace

lying "behind" H is H- = {(xl' ..., xd)lalxl + ... + adxd+ ad+l < On. The "front" side of

H lies to the side of H in the direction of the hyperplane's normal, (al,...,ad).

Each node v of the BSP tree represents a convex region of d-space, R(v) (defined

below). Each internal node v of the tree is associated with a partitioning hyperplane, Hv'

which intersects the interior of R(v). The hyperplane partitions R(v) into three sets:
+ -

R(v) n Hv' R(v) n Hv' and R(v) n Hv. The d-dimensional region "in front of" or "to the

positive side of" Hv is represented by the right child of v, v.right. The region "behind" or "to

the negative side of" Hv is represented by the left child, v.left. The intersection of Hv and

R(v) is called the Jlub-hyperplane of H", SHp(H.,,), and is convex, of dimension dol, and may

u
4 /

/""
w y

/\ /\
3

/\ 3 . /\
1 2 5 6

(a) (b)

30

or may not be bounded.

Each R(v) is the intersection of halfspaces defined by the path from the root to v.

More formally, for each edge (v,v2) in the tree, associate a halfspace HS(v,v2). If
- +

v2 = v.left, then HS(v,v2) = Hv. Otherwise, v2 = v.right, and HS(v,v2) = Hv. Let E(v)

denote the set of edges on the path from the root to v. Then, R(v) = n HS(e). The root

nE(v)

node represents all of d-space. Each R(v) is open in the topological sense [Lay82]. The

leaves of the BSP tree correspond to the un-subdivided polyhedral regions, called cells. We

will use the terms "leaf" and "cell" interchangably, and our meaning should be made clear by

the context. Cells are convex, and mayor may not be bounded. A trivial BSP tree has no

internal nodes, consisting only of a single leaf.

The above data structure, a binary tree with internal nodes labeled with plane

equations, is called a generic BSP tree.

Often it is useful to augment the generic tree with additional information. To model

polyhedra, the labeled-leaf BSP tree is used. Each leaf (cell) of a generic BSP tree is

classified by labeling it as either in or out, according as the cell is entirely within or outside of

the polyhedron. Each in-cell has a non-empty interior, by construction. The union of the

closure of all in-cells therefore defines a regular set. A labeled-Ieaf BSP tree T is said to

represent a regular set S when S is identical to the union of the closure of the in-cells of T.

(Equivalently, T represents the set defined by the closure of the union of its in-cells.)

The labeled-Ieaf BSP tree can be further augmented with the boundary of the set it

represents. Since each cell of a labeled-Ieaf BSP tree lies entirely in the interior or exterior

of the polyhedron, any point on the set's boundary must lie in a sub-hyperplane. A

boundary-augmented BSP tree associates a boundary representation of the (d-i)-dimensional

boundary lying in a given sub-hyperplane with the internal node of the tree representing that

31

sub-hyperplane. In 3-d, the boundary in a given sub-hyperplane is a polygon. If a portion of

the boundary lying in some sub-hyperplane is of dimension (d-2) or less, it is not used to

augment the sub-hyperplane node. In other words, the portion of the boundary associated

with a node is regularized in the dimension of the sub-hyperplane. Any such part of the

boundary will be in the closure of one or more (d-1)-dimensional faces associated with some

node whose sub-hyperplane is adjacent to the given sub-hyperplane. In the next section it is

shown how such a boundary-augmented tree can be used.

Renderini

The BSP tree was originally used for the preprocessing of a set of polygons that

described the boundary of some set of objects. This took the form of a boundary-augmented

tree without labeled leaves. A boundary-augmented BSP tree can be traversed to define a

visibility priority ordering on these polygons [Fuch80, NayI81]. Two polygons, A and B, are

related by the visibility priority ordering A < B, if, for a given viewing position, it is

possible that polygon A obscures B, and that B cannot obscure A. Suppose we are given a

boundary-augmented BSP tree. Consider an internal node, v, augmented with polygon P.

Assume that the viewing position is located in the front halfspace of Hv. Then, for any

polygon Q lying in the front halfspace, Q < P. Similarly, for any polygon R lying in the

back halfspace, P < R. In other words, any polygon lying to the same side of a hyperplane

as the viewing position could occlude some polygons lying in the hyperplane, which could, in

turn, obscure some polygon on the other side of the hyperplane.

The tree can be traversed to yield the polygons in visibility priority order as follows.

At each internal node of the tree, test the viewpoint against the partitioning hyperplane

represented by that node. First, recurse on the "far" subtree (which is the left or right

subtree according as the viewpoint is in front of or behind the plane), then output the

polygons lying in the hyperplane, and then recurse on the "near" subtree.

32

v w

u

u

/ \

v

V viewer

Figure 13. IDustration of Visibility Priority

(Figure 14.) The order in which the polygons are output is the visibility priority ordering,

from lowest to highest. This ordering and can be used to drive the painter's algorithm. The

painter's algorithm is based on the characteristics of the frame buffer (bit-map) display

device. A frame buffer consists of a quantity of memory, enough to associate at least one bit

with each displayable poiut on a television screen, and circuitry to read the memory during

screeu refresh, using memory contents to control the intensity of the electron beam(s). A

new object will be displayed on the first screen refresh cycle to occur after the appropriate

memory locations have been written. The usual memory write operation is destructive.

Thus, if we write objects to memory in a back-to-front order (lowest-to-highest priority),

33

procedure Render_aSP (v : aSPTreeNode; eye : polnC3D);

d := evaluate Hv at eye;
If d > 0 then

asp Jender (v.left.eye);
output v's embedded polygons;
asp Jender (v.rlght, eye);

el.e
asp Jender (v.rlght. eye);
output v's embedded polygons;
asp J8nder (v.left.eye);

end; r Render_BSP -)

Figure 14. Algorithm to generate a Visible Surface Rendering from a Boundary-Augmented
BSP Tree

"close" objects will be drawn later, effectively obscuring previously written ("distant")

objects. This is similar to the way a painter can obscure anything on the canvas by painting

over it. (Reversing the order (Le., first the near subspace then the far subspace) results in a

front-to-back ordering.)

This algorithm has been used [ThibS7 ,FuchS3, GiguSS] to generate visible surface

renderings fast enough for interactive use. The BSP tree can also be rendered with ray-

tracing, as discussed in Chapter V.

Classification al~orithms

Three algorithms to determine the classification of an object with respect to a

polyhedron represented by a labeled-leaf BSP tree are now presented. Inserting an object

into a BSP tree involves determining which cells and sub-hyperplanes of the BSP tree contain

the object. H the object lies in more than one cell, it is split into subsets such that each lies

entirely within a cell. It may also be the case that the object or portions of it lie in a sub-

hyperplane of the BSP tree.

34

The classification of a set X with respect to a set S consists of three subsets of X:

x noli' int S, X noli' en S, and X noli' bd S, where the operation n"" is defined as the usual

regularized intersection, except that the closure of the result is performed in the subspace X.

In other words, the sets are regularized in the dimension of X. Classifying a set X with

respect to another represented by a BSP tree T is done by inserting X into T. Portions of X

lying in cells of T are classified according to the corresponding leaf label: in or out. Since no

explicit information on the classification of sub-hyperplanes is maintained in a labeled-leaf

BSP tree, portions of X lying in a sub-hyperplane of T are classified with respect to the

subtrees v.left and v.right. The results of these classifications are combined to determine the

classification of the portions in the sub-hyperplane. For example, a point in a sub-hyperplane

that has an in-cell on one side and an out-cell of the other is on the boundary; a point with

two in-cells on either side is in the interior.

Point c1assification

The point classification problem can be stated: "Given a set S and a point x, determine

if x lies in the interior of S, the exterior of S, or the boundary of S." We assume S is regular

and we have a BSP tree T representing S.

Figure lS gives pseudo-code of a recursive algorithm. Note that since classifications are only

associated with cells, the algorithm recurses on both subtrees when the point lies in a

hyperplane Hr'

The running time of the algorithm is proportional to the size of the tree. The worst

case tree would have all sub-hyperplanes having a common intersection. The worst case

running time would occur when the point to be classified lies in this common intersection. In

this case, both subtrees of each node encountered would be traversed. However, most points

do not lie in any hyperplane. Classification of these points only requires traversing a path

from the root to a leaf. The running time in these cases is then on the order of the depth of

3S

proooeluro Cla88lfy..Poht(x : Point; v: BSPTreeNode) return. {In.out, on}

If v Is a leaf
return the leaf's value (Inor out)

01.0

d := dot.product(x, Hv)'
If d < 0 then

return polnLclasslfy(x,v.left)
01.0 If d > 0 then

return polnLclasslfy(x,v.rlght)
01.0 (*d liesIn the partitioningplane *)

I := polnLclasslfy(x,v.left)
r := polnLclasslfy(x.v.rlght)
If I = r then

return r
01.0

return "on"
oncl; (* Clasalfy"polnt *)

Figure 15. Algorithm for Point Classification

the tree.

Classifyini a Line Seiment

The line segment is represented by its end points x and y. To insert a line segment,

the endpoints are tested against the hyperplane of the root node. If both end points lie to the

same side of the hyperplane, the line segment cannot intersect the hyperplane, and the

insertion recurses on the appropriate subtree. If the endpoints lie on opposite sides of the

hyperplane, then the line segment intersects the hyperplane. The point of intersection p is

calculated using the method presented in the Appendix. This new point p is used as the

endpoint of two new line segments: (x,p) and (p,y). Each of these is then recursively

classified with respect to the appropriate subtree. When a leaf is encountered, the current

36

prooadura Cla88lfyLlneSegment(Segments:set of LIneSegment;
v : BSPTreeNode)

return. < LInS, LoutS, LonS : set of LlneSegment>

If v Is a leaf than
ca.a v.label of

In: return < P, 0, 0 >
out: return < 0, P, 0 >

a'.a
for a.ch L In Segmentsdo

< LJeft, LJlght, L_colncldent> U= partition L by Hv
If LJeft .. 0 than

< LJefUnS, LJefLoutS, LJefLonS > := ClasslfyLlneSegment(LJeft, v.left)
If LJlght *' 0 than

< LJlghLInS, LJlghLoutS, LJlghLonS > := ClasslfyLlneSegment(LJlght, v.rlght)
If l_colncldent .. 0 than

< coJnL, co_cull, co_onL > := ClasslfyLlneSegment(L_colncldent,v.left)
< co_lnlInR, coJnLoutR, coJnLonR > := ClasslfyLlneSegment(co_1nl,v.rlght)
< co_outLInR,co_outLoutR, co_outLonR > := ClasslfyLlneSegment(co_outL, v.rlght)

LInS := LJeftJnS U LJlghUnS U coJnLInR
LoutS := LJefLoutS U LJlghLoutS U co_outLoutR
LenS := lJefLonS U lJlghLonS

U coJnLoutR U coJnLonR U co_outLlnR U co_outLonR
return < LInS, loutS, LonS >

and (* Cla88lfyLlneSegment*)

Figure 16. Algorithm for Line Segment Classification

line segment is classified according to the leaf's label.

If both end points lie in the hyperplane, the segment must be classified with respect to

both subtrees. This is done by first classifying the segment with respect to the left subtree.

This returns three sets of line segments, corresponding to "in", "out", or "on" classifications.

"On"-segments are on the boundary of the set, and need not be classified with the right

subtree. The "in"-segments are classified with respect to the right subtree. Those segments

from this second classification that are "in" lie in the interior of the set, those that are "out"

or "on" are on the boundary of the set. Similarly, the "out" segments resulting from the

classification with respect to the left subtree are classified with respect the the right subtree.

37

Those segments from this second classification that are "out" are in the exterior of the set,

and those that are "in" or "on" are on the boundary. (Figure 16.)

The result of the insertion process is 3 sets of line segments, those 111,011, or out of

the set. Each set in turn consists of subsets reflecting the geometric relationship between the

original line segment and the BSP tree, as manifested by the insertion process.

Classifyini a PolYion

Given a labeled-Ieaf BSP tree T representing a set S, and a representation of a

polygon P, P is to be classified with respect to S. Insertion of Pinto T is again the basic

operation. P is represented by an ordered list of vertices (pp P2' ..., p,,), luch that there is

an edge between each consecutive pair of vertices modulo n. At a node v of T, the polygon

is partitioned by HI'. First, each vertex of P is compared to HI'. If the polygon has vertices

on both sides of HI" the partitioning operation splits the polygon into two parts. This

essentially involves partitioning the line segments describing the edges of the polygon. If the

polygon is not split, the partitioning operation determines if the polygon lies in front of,
+

behind, or in hyperplane HI'. The portion lying in HI' are recursively inserted into v.right,

and the portion lying in HI' into v.left. Figure 17 shows the algorithm to partition a polygon.
+ -

Note that the partitioning operation finds three regularized intersections: H n *P, H n *P ,

and H n *P, where regularization is in the dimension of P. The algorithm to partition a

polygon is basically the same as those used to "clip" a polygon to the sides of a viewing

window (see[Fole83]). The difference from such a clipping algorithm is that both parts of the

result of a split are retained. The algorithm shown handles convex polygons. Extension to

concave polygons is straightforward.

In the pseudo-code in Figure 17, the function TestVertex (v,H) returns 0 when v E H, 1
+ . +

when v EH, and -1 when v EH.

38

proc.dur. SplltPolygon(H : hyperplane; P : polygon) r.turn. <LeftPoly, RightPoly,CoPoly : polygon>- +
nH :=nH :=f....
preY_vertex := last vertex In P'S list
lasL,state := TestVertex (preY_vertex, H)
currenLvertex := first vertex In P's list

for I := 1to number of vertices InP do

nexLvertex := the vertex after currenLvertex Inp's list
state := TestVertex(currenLvertex, H)

.f state=#lasL,stateand atate:#Oand lasL,state:#Oth.n
- +

InH := InH := true
p := point of intersection of H and the edge joining

preY_vertex and currenLvertex
Add p to list for LeftPoly
Add P to list for RlghtPoly

.f atate=-1 th.n

InH :... true
Add currenLvertex to listfor LeftPoly....
If state=1th.n

+
InH := true
Add currenLvertex to list for RlghtPoly....
Add currenLvertex to list for LeftPoly
Add currenLvertex to list for RlghtPoly

lasL,state := state
preY_vertex:= currenLvertex
currenLvertex := nexLvertex

.nd for
- +

.f not InH and notlnH th.n
LeftPoly:= RightPoly:= {21
Copoly := Poly....
Copoly := {21

r.turn <LeftPoly,RlghtPoly,CoPoly>

.nd (* SplltPolygon *)

Figure 17. Algorithm to Partition a Polygon

As the insertion progresses, the polygon eventually makes its way into some set of

leaves and sub-hyperplanes of T. The portions of the polygon lying in a cell of T can be

classified with respect to S based on the cell's label. The portions lying in sub-hyperplanes of

T are classified in a manner similar to that used to classify a point or line segment lying in a

39

subhyperplane. The algorithm is identical to that for line segment classification, with one

modification: code for partitioning the polygon with the hyperplane replaces that for

partitioning a line segment. Also note that the classification of a coincident polygon (Le.,

one lying in the sub-hyperpla,ne of node v) with respect to v.left will never return an "on"

result.

Generatini the boundary of a labeled-Ieaf BSP tree

Given a labeled-Ieaf BSP tree, it is possible to augment it with polygons constituting

its boundary. This is done for each internal node of the tree by first producing a polygon

representing the subhyperplane Hv' SHp(Hv)' This polygon is then classified with respect to

the tree rooted at v, using the method of the previous section.

To construct a polygon representing the sub-hyperplane of Hv' a "maximally finite"

representation of the hyperplane is first constructed, Le., a polygon large enough to be

considered unbounded for all practical purposes, but still within the limits of the resolution of

computer arithmetic. This polygon is found by orthogonally projecting, along the x/ axis, a

maximally finite representation of the Xj=O plane into Hv' The axis of projection, xi' is

chosen to be the largest component of Hv's normal. (Figure 18.) For simplicity of

presentation, assume that the axis of projection is the z-axis. The vertices of the polygon

representing the z=O plane are (M,M,O), (-M,M,O), (-M,-M,O), and (M,-M,O), where M is

chosen to be the fourth root of the largest representable floating point value, in order to

ensure arithmetic over/underflow does not occur in subsequent operations. If the plane

equation of Hv is ax+by+cz+d=O, then the coordinates of the projection of vertex (x' ,y' ,0)

Xi =0 J

Figure 18. Projecting a Representation of xi = 0 onto H'II.

procedure GenerateJSubhp (v : BSPTreeNode) return. Polygon

I := Index of largest component of H v's normal
S := projection along X axis into H

of "maximally ~Inlte"rep. or the X, = 0 plane

for ..oh e E E(v) do
5 := 5 n HS(e)

return 5

.nd (- Generate_8ubhp -)

Figure 19. Algorithm to Generate a Polygon Representing the Sub-Hyperplane of H'II

is (x' ,y' ,(-ax-by-d)/c).

40

41

Having found a representation of the hyperplane, it is then transformed into a

representation of the sub-hyperplane. This is done by inserting the polygon into the tree

along the path from the root to node v. Recall that the sub-hyperplane is the intersection of

Hv and R(v), and that R(v) is bounded by partitioning hyperplanes on a path from v to the

root of the BSP tree. The hyperplanes on this path to the root successively clip the polygon.

The intersection of the polygon with the appropriate half space is retained at each stage;

specifically, if v is in the left (right) subtree of an ancestor w, we clip the polygon to the back

(front) halfspace of Hw' (Figure 19.)

Once this clipping is complete, a polygon representing the sub-hyperplane of Hv

remains. The polygon is now classified with respect the sub trees of v, as in the previous

section. To maintain the convention of outward-pointing normals, boundary polygons "in"

v.left and "out" of v.right are oriented so their outward-pointing normals point in the same

direction as Hv's normal, and the boundary polygons "out" of v.left and "in" v.right are

oriented in the opposite direction.

The boundary polygons could also be generated with two classifications and a "glue."

The subhyperplane representation is inserted into v.left, generating two lists of polygons,

corresponding to in- and out-cells of v.left. A copy of the subhyperplane representation, with

its orientation reversed, is then inserted into v.right, generating two more lists of polygons.

The two lists of polygons lying in in-cells on either side of the hyperplane are then "glued"

together (as discussed in Chapter IV), which "cancels out" polygons that overlap and are of

opposite orientation. This has the effect of eliminating any polygons in regions bounding in.

cells on both sides. We are then left with polygons bounding in-cells on one side, out-cells

on the other, and hence on the boundary.

Constructini BSP trees from boundary representations

The algorithms presented below for constructing BSP tree representations of regular

42

sets use boundary representations of the input polyhedra, but are independent of the

particular B-rep used. For purposes of discussion, 2-d polygons are represented as lists of
"

vertices, and 3-d polyhedra as sets of 2-d polygons. Polygons are consistantly oriented, so

that normals point to the exterior of the solid. The techniques handle arbitrary polyhedra

(including concave polyhedra with holes). The boundary representation is assumed to be

valid, defining a closed surface. As much as is possible, the algorithms are discussed

independently of the dimension, d, of the objects being modeled. The term face refers to the

(d-l)-dimensional boundaries of a d-polyhedron. The (d-l) dimensional hyperplane which

embeds a face f and has f's orientation is denoted by Hr The interior, exterior, and

boundary of a set S are denoted by int S, ~xt S, and bd S, respectively.

Given a boundary representation of a convex polyhedron S, a BSP tree representation

of S is constructed as follows. Recall that any convex set can be represented by the

intersection of halfspaces. A simple BSP tree for a convex set is then a list of hyperplanes.

Each internal node has one "out" child. The last node in the list has one "out" and one "in"

child, with R(the "in" child) = int S. (Figure 20.) An algorithm to construct this tree from

the boundary representation of S would remove faces from S one at a time, essentially

replacing each with a hyperplane that embeds the face.

For concave polyhedra, some faces may have to be split. An algorithm to construct a

BSP tree from an arbitrary boundary representation of S is given in Figure 21. To "partition

faces of S with H," each face in the set S is tested against the hyperplane H. If H splits a

face, representations of the two parts are returned in lefCS and righCS. Faces returned in

lefCS (right~) have no vertices in the front (back) halfspace of H. Faces returned in

coplanacS lie entirely in H. Figure 22 shows a concave polygon and the BSP tree output by

the algorithm.

43

in out

Figure 20. A Convex Set and its BSP Tree

Procedure BuildJ)SPT implements essentially the same algorithm as is used to

preprocess polygons for visibility priority ordering [Fuch80, NayI81], with one significant

addition. When a partitioning operation finds no polygons to one side of the partitioning

plane, that region lies either entirely within the interior or the exterior of the object, and the

resulting leaf is classified as "in" or "out". Procedure Build_BSP can easily differentiate

between the two cases because hyperplanes are chosen that embed faces, and faces have

outward-pointing normals.

When a partitioning of the polyhedron's faces results in a region containing none of

the polyhedron's faces, it must be the case that all faces lying in the splitting sub-hyperplane

have the same orientation. The homogeneous region must be either in or out. A face lying

in the hyperplane with one orientation would indicate that the region was in, while a face

with the opposite orientation would indicate it was out. H faces of both orientations lie in the

hyperplane, the homogeneous region would be both in and out, a contradiction.

All boundary points of a polyhedron represented by a BSP tree lie in sub-

44

prooedure BulldJ3SPT (S : set of faces) return. BSPTreeNode

Choose a hyperplane H that embeds a face of S;
newJ3SP := a new BSP tree node with H as Its partitioning plane;
<lefCS, rlghCS, coplanar_S> := partition faces of S with H;
append each face of coplanar_S to the appropriate face list of newJ3SP;

If (lefLS Is empty) then
If (coplanar _S has the same orientation as H) then

(O faces point "outward" O)
newJ3SP.left := "In";

el.e newJ3SP.left := "out";
el.e

newJ3SP.left := Bulld_BSPT (IefLS);

If (rlghLS Is empty) then
If (coplanar_S has the same orientationas H) then

newJ3SP.rlght := "out";
el.e newJ3SP.rlght := "In";

el.e
newJ3SP.right := BulldJ3SPT (righLS);

return newJ3SP;

end; (OBulldJ3SPT O)

Figure 21. Algorithm to Build a BSP Tree from a Boundary Representation

hyperplanes, but not all sub-hyperplanes must contain faces. More balanced trees can be

constructed by allowing use of hyperplanes that do not embed faces, but, for example, split

the polyhedron into two equal-sized sets. When partitioning the boundary with a hyperplane

that does no contain a face, it may happen that one side of the hyperplane winds up with no

part ot the boundary. This is the point at which an in or out value is to be assigned to the

resulting leaf of the BSP tree. However, the technique of comparing the embedded face's

normal to the hyperplane (as in Procedure Build..BSPT) cannot be used. The portion of the

boundary lying to the other side of the hyperplane can be examined to determine the leaf's

value. This is discussed in Chapter IV under "In/Out Testing."

4S

in out in out in out

Figure 22. A concave set and its BSP tree

Metric properties

In order for a model of a geometric entitity to be useful, it should be possible to use

it to answer almost any geometric query automatically. In previous sections, algorithms for

classification and boundary generation were presented. In this section we discuss algorithms

for determining volume and cent er of mass.

Volume

The volume of a polyhedron represented by a BSP tree is the sum of the volumes of

the in-cells. Each in-cell is a convex polyhedron. Two algorithms for computing the volume

of a convex polyhedron are given in [Cohe79]. These algorithms require a boundary

representation of the convex polyhedron as input. This is not directly available from the BSP

tree representation, in which the cell is described by the intersection of halfspaces on the path

from the root of the BSP tree to the leaf representing the cell. To use these algorithms, then,

a method of determining the boundary representation of a cell is needed.

In particular, the algorithms require the locations of the vertices of the polyhedron

46

and the topological information as to how these are grouped into edges and faces. Geometric

information about the edges and faces (e.g., line or plane equations) "are not required.

A modification of the technique for bouJ,1dary generation from a labeled-Ieaf BSP tree

can be used to generate a boundary representation for the cell corresponding to leaf of a BSP

tree. First, a representation of the sub-hyperplane of each node on the path to the leaf is

generated, using the technique described in that section. This involves clipping a

representation of the entire hyperplane successively to halfspaces defined by ancestor nodes.

Next, each sub-hyperplane is clipped to the halfspaces defined by descendant nodes on the

path to the leaf of interest. This results in a set of boundary representations of faces of the

cell. It remains to coalesce these faces, merging vertices and edges shared by more than

face, producing a graph representation of the polyhedron. This can be done by comparing

the position of each vertex of a given face to each vertex of the other faces.

Lasserre [Lass83] gives an algorithm for the volume of a convex polyhedron that uses

an input representation that is more convenient for use with BSP trees. The polyhedron is

represented as the intersection of half-spaces, specifically, as a system of linear inequalities.

The algorithm handles "redundant constraints," i.e., half-spaces that do not share part of

their boundary with the boundary of the polyhedron. This makes it ideally suited for the

purpose of finding the volume of a cell corresponding to a leaf of a BSP tree. The half-

spaces defined by the path from the root of the tree to this leaf constitute the input to the

algorithm.

The algorithm is based on an algebraic formulation of the volume of ad-dimensional

convex polyhedron in terms of the (d-1)-dimensional volumes of its (d-1)-dimensional faces.

The technique essentially finds the volume of the i-th (d-1)-face by first eliminating the i-th

variable from the system of inequalities (by back-substitution). The resulting system defines

a (d-l)-dimensional polyhedron, whose volume is found recursively. Recursion is terminated

47

when back-subtitution is no longer possible. The author's state that a symbolic algebra

program can be used to construct an analytic expression for the volume of a given

polyhedron in this manner.

A major advantage of this algorithm is that it does not require constructing the graph

representation of the polyhedron, an intricate process that can be difficult to implement. It

also determines redundant halfspaces, those that do not constitute a face of the polyhedron.

A technique for approximating the volume is the Monte Carlo technique. This

involves testing a randomly selected set of points for inclusion in the object, and basic the

volume estimate on the percentage found to lie in the object. An algorithm for point

classification was given in a previous section. This approach may be attractive in

environments where point classification is inexpensive, as may be the case for a vector

(pipelined) processor. In such a setting, performing the same operation on long vectors

(arrays) of data is very efficient.

Another approximation technique, ray-casting, intersects a set of regularly spaced

parallel lines with the object. By considering each line segment in which a line intersects the

object as a parallelepiped of fixed cross-section (determined by the spacing of the lines), the

aggregate volume of these parallelepipeds approximates the volume of the object. An

algorithm to compute the intersection of a line (ray) with an object represented by a BSP tree

is given in a subsequent chapter.

Center of Mass

The structure of the BSP tree allows for a simple algorithm for center of mass.

Assume the center of mass of a convex polyhedron (cell) can be computed. (This could be

done with a modification to Cohen and Hickey's algorithm, making use of the fact that the

center of mass of a tetrahedron is the barycenter of it's vertices.) Assume also that the

polyhedron is of constant density.

48

The algorithm for computing the center of mass of a polyhedron represented by a

BSP tree is a recursive, post-order traversal. To find the center of mass of the portion of the

object represented by a node v of the tree, first find the center of mass and volume of each

subtree of v. We can consider the sets represented by the subtrees of v as point masses,

located at their respective center of mass, with mass proportional to their respective volumes.

The volume of the set represented by the tree rooted at v is the sum of these voluems, and

the center of mass is located along the line segment connecting the two point masses. The

position of the center of mass along this line is determined by the relative masses of the two

points. If the points are PI and P2, with masses M I and M2' respectively, then the center of

MI

caM = a PI + (l-a) P2' where a =
MI + M2

While the above gives an elegant solution, a more efficient method would simply find

the weighted average of the barycenters P; of the cells, where the weight of each cell is its

~P;M;
«lis;

COM=

~ M;
ails ;

Discussion

BSP tree representations of a set are not unique: a given set may be represented by

more than one BSP tree. This is suggested by the fact that any hyperplane can be used to

partition an as-yet un-subdivided region, as long as it intersects the interior of the region.

This fact leads one to ask which representations are "better" than others. The answer

depends on the use which is to be made of the tree. For geometric searching applications in

which a path from the root to a leaf is followed, such as ray-tracing, a minimum height tree

may be desired. For applications that traverse the entire tree, such as visibility priority

ordering, a tree with a minimum number of nodes may be more appropriate. Generating all

possible trees and choosing the best one is too expensive. Naylor[NayI81] has shown the

49

number of trees to be O(n I), where n is the number of faces of the polyhedron. Heuristics

are used that try to choose partitioning planes at each stage of tree construction that will

result in a final tree with the desired characteristics. Another result in Naylor's thesis

concerns the time complexity of the process of constructing a BSP tree from a B-rep. The

result assumes that O(mP) time is taken to choose each hyperplane, where m is the number of

polygons considered at a given stage. (Since each polygon must be considered in the course

of partitioning, p can be no smaller than 1.) It is also assumed that half (or fewer) of the

polygons are split at each stage. This increases the total number of polygons by 50 percent at

each stage. Letting n be the number of faces in the input, it is shown that under these

assumptions the process is O(nP log n). The question remains as to whether or not the

assumption that half or fewer of the polygons are split at each stage is reasonable. The

answer would require arguments based on the geometry of polyhedra, and is left for future

research.

There are trade-offs to be made between the amount of work to be spent in building

the tree and the expected return on this investment as evidenced by improved performance,

accrued over the life of the tree. We discuss the behavior of several heuristics in Chapter VI.

This BSP tree representation is in some repects similar to the octree. Both are tree

structures with leaves marked to represent membership. The octree partitions with planes

orthogonal to the coordinate axes, which makes testing of a point with respect to a plane a

simple comparison, but also makes for verbose and approximate representations of faces of

polyhedra that are not axis-aligned. The BSP tree permits the use of partitioning planes of

any orientation. This requires a dot-product computation to test a point with respect to a

plane, but allows us to succinctly and exactly represent arbitrary polyhedral regions. Of

course, axis-aligned planes can be used in the BSP tree when desired. We can apply a

transformation to a BSP tree by transforming each hyperplane equation. Transforming an

octree representation requires rebuilding the tree, since the partitioning planes must remain

50

axis-aligned, placed at regular subdivisions of the size of the universe.

51

CHAPTER IV

Set Operations

Leave off fine learning! End the
nuisance of saying yes to this
and perha ptl to that, distinctiontl
with how little difference!

- Lao Tzu

This chapter presents algorithms to produce a labeled-Ieaf BSP tree representing a set

theoretic expression on polyhedra. Specifically, two cases are addressed. The first involves a

single binary set operation, in which one operand is represented by a labeled-Ieaf BSP tree

and the other by a boundary representation. The result is obtained by modifiying the input

BSP tree, and so is called an incremental set operation. The second takes as input an

arbitrary set theoretic expression (CSG tree) with boundary representations as primitives,

and outputs a labeled-Ieaf BSP tree representing the set. This algorithm is called "CSG

evaluation. " The algorithms are then extended to operate on operands represented by BSP

trees, in which each internal node is augmented by a boundary representation of its sub-

hyperplane.

Any system for interactive modeling of polyhedra with set operations must solve

three basic problems: efficient spatial search, modification of the model, and visible surface

rendering. Most existing algorithms, some of which are described in a previous chapter, all

suffer the drawback that the data structures and algorithms for these crucial aspects are

distinct and unrelated. For example, spatial search may be handled with a data structure that

is not an integral part of either the model modification or visible surface sub-problems. The

one case that does unify these aspects to some extent are the octree-based schemes proposed

independently by Carlbom[Carl87] and Navazo[Nava86]. However, these methods have the

S2

drawback of requiring complex boundary-based algorithms at the boundary nodes (Le.,

modification of the model is not fully unified with the other aspects). The techniques

pre3ented in this chapter address these three issues within a unified framework, provided by

the BSP tree. This unification serves to reduce the complexity of the task of building such a

system. This simplicity manifests itself in reducing the amount of programming that must be

done. Although more efficient solutions to each of these problems may possibly exist, the

unity and simplicity of the BSP tree certainly helps to offset this.

Concepts Relatini to the Aliorithms

Set operation algorithms may be considered to be representation conversion

algorithms. An expression like A n* B, where A and B are represented as, say, boundary

representations, is itself a representation of the set it denotes, the regularized intenection of

object A and B. This representation may be inconvenient, however: it may take too much

space, may involve large amounts of computation and complex algorithms to answer

geometric queries, etc. Converting such an implicit representation to an explicit one, such as

a single boundary representation or a BSP tree, may therefore be desired. The convenion

from a set theoretic expression to a single data structure (the BSP tree in this case) is called

set operation #!Valuation, and is a special case of the class of representation convenion

algorithms.

Given a representation X, call the set it describes Denotes (X). A set operation

evaluation problem is a pair (X,R), where X is a representation of a set theoretic expression,

and R is a region of space. X is defined only within R. Overload the Denotl!S function to

define Denotes(X,R) = Denotes(X) n R. A solution to a set operation evaluation problem

is a representation Y such that Denotes(Y, R) = D~notes(X, R). In a complete solution, Y is

not a set theoretic expression but is a (component of a) data structure. In this context, a

complete solution is a BSP tree.

53

A partitioning of a set operation evaluation problem (X,R) is a set of subproblems

{(X,R1)' (X, ~), ..., (X, Rn)}' where UR1=R, and nR1=0. If these subproblems have

I..}

solutions YI' then the solution Y to the original problem is the union of these solutions:

D~not~s(Y, R) = U D~not~s(YI,R1).

Partitioning is one technique that can be used to reduce a problem into simpler

subproblems. In the context of set operations, simplification of a set theoretic expression is

possible whenever one or more operands are found to be homog~nous with respect to the

region of interest R. A region R is homogeneous with respect to an operand S when no part

of the boundary of S intersects R. Thus, homogeneity with respect to S implies that either R

t: int S, or R t: ~xt S. In terms of the D~not~s function, these cases correspond to D~not~s(S,

R) = D~not~s(U, R), where U is the universal set, and D~not~s(S, R) = D~not~s(0, R),

respectively. Once a region is found to be homogeneous with respect to all operands of a set

theoretic expression, the region is homogeneous with respect to the entire expression.

Determining if the region is wholly within or outside of the set represented by the expression

is then a simple matter of evaluating a Boolean expression. The result is a complete solution

to the expression within R.

To see how this simplification can be used to obtain a complete solution, consider the

expression An. B in the context of Figure 23. The region R1 lies entirely in the exterior of

B. Since the regularized intersection of two sets must contain points in the interior of both,

we know that R1 contains no part of An. B: D~not~s(A n. B, R1) = D~not~s(0, R1)'

Region ~ lies entirely in the interior of B, so D~not~s(A n. B, ~) = D~not~s(A, ~).

Results of this sort are summarized in Figure 24. In that figure, "in" means the region lies

wholly in the interior of the operand, and "out" means the region lies wholly in the exterior

of the operand. Note that simplifications of the sort applied to region ~ above can be done

I
I
I
I
I

RI I
I
I
I

I
I
I
I
I
I
I
I
I'

A

S4

B

Figure 23. Example of Expression Simplification

sub-expression.

without any knowledge about operand A; it may be represented by an arbitrarily complex

The algorithms presented below use a BSP tree to define each region of interest,

specifically, the region R(v) associated with a node v of the tree. The BSP tree is also used

to partition a set operation evaluation problem into subproblems.

Aliorithms Usini the BSP Tree

Complementation

First, consider the unary complementation operator. Given a set A, represented by a

labeled-Ieaf BSP tree, a labeled-leaf BSP tree representing its complement, -* A, can be

formed as follows. All "in" cells are changed to "out" cells, and all "out" cells to "in" cells.

If the BSP tree is also boundary-augmented, the orientation of each boundary polygon is

reversed. A boundary representation is complemented by reversing the orientation of every

ss

face.

Incremental Evaluation

Incremental evaluation modifies a BSP tree to reflect the result of a set operation on

the set the tree represents and one additional set, represented by a B-rep. The result of the

set operation is recorded by changing the BSP tree T. These changes take two forms: (1)

some subtrees of T are replaced by leaves, and (2) some leaves of T are replaced by new

subtrees. Given a labeled-Ieaf BSP tree T representing a regular set A, and a boundary

representation of a polyhedron B, an algorithm to determine A op B is presented, where op

is a regularized set operation.

Figure 24 presents the algorithm as pseudo-code. At a given node v of the tree, the

subproblem under consideration is (A op B, R(v», where A is represented by the subtree of

T rooted at v, and B is represented by the subset of B's boundary lying in R(v). In 3D, the

boundary of B is represented as a set of polygons.

When evaluating a difference operation A - * B, the right operand is complemented,

and the equivalent intersection operation A n* (-* B) is evaluated. The discussion is

therefore restricted to the union and intersection operators.

The algorithm begins at the root of T with the entire boundary of B, and proceeds to

traverse T in a recursive, pre-order fashion. The problem (A op B, R(v» is partitioned into

three subproblems: Plift = (AopB ,R(v.left», Pright= (AopB,R(v.right»,

PcoplaMT= (AopB,R(v)nHy). Since A is represented by the BSP tree rooted at v, the

representations of A in subproblems Pltlftand Prightconsist of the left and right children of v,

respectively. The boundary of B lying in R(v) is partitioned with the hyperplane Hy' The
- +

portion in Hy is passed on to a recursive call for Plift' and the portion in Hy to P right. Any

faces of the boundary of B found to lie in (coplanar with) Hy are kept at node v for later

S6

proc.dur. IncrementaLSeLop (op : seLoperatlon ;
v : BSPTreeNode :
B : ..t of Face) r.turn. BSPTreeNode

If op = -*th.n
B := Negate_B-rep(B)
op:= n*

If v Is a leaf th.n
c... op of

U*:c... v.valueof
In : r.turn v
out: r.turn Bulld..BSPT(B)

n* : 0... v.valueof
In : r.turn Bulld..BSPT(B)
out: r.turn v

.1..
<B_left, BJight, B_coplanar> := partitionB withHv

If BJ8ft has no faces th.n

status := TesUn/out (Hv' B_coplanar,BJlght)

0... op of
U*: c... status of

In : dlscard..BSPT(v.left)
v.!eft:= new "In"leaf

out: do nothing
n* : c... statusof

In : do nothing
out: dlscard..BSPT (v.!eft)

v.left := new "out" leaf
.1..

v.left := Incremental_SaLop(op, v.!eft, B_left)

If BJlght has no faces th.n

(* similar to above *)

.1..
v.rlght := IncrementaLSeLop (op, v.rlght, BJlght)

r.turn v

.nd; (* IncrementaLSeLop *)

Figure 24. Algorithm for Incremental Set Operations

processing (Section "Boundaries"). H T is not boundary-augmented, Pcoplanarneed not be

solved: faces of B lying in Hy are simply discarded. However, if T is boundary-augmented,

Pcoplanarneed only be partially solved, to the extent necessary to determine the boundary of A

57

TABLE Z. E Si lifi Rul

op B lying in H'V. This is due to the fact that a boundary-augmented BSP tree does not

explicitly differentiate between regions of sub-hyperplanes that are in the interior or exterior

of the polyhedron. Such regions would bound in-cells (or out-cells) on both sides of the sub-

hyperplane.

The recursion terminates when one of the operands is homogeneous in the region

R(v), defined by the current node v. This is the case when v is a leaf node, or if no part of

B's boundary intersects R(v). First, consider the case in which no part of B's boundary

intersects R(v). If v is not a leaf, the In/Out Test (presented in later in this Chapter) is

evaluated to determine the status of R(v) with respect to B. This test is described in a

subsequent section. As Figure 25 indicates, depending on the set operation and the outcome

of this test, there are two basic outcomes for the set operation. Either the result is

homogenous, with the value returned by the infout test, or the result is identical to A. If the

result is homogenous, the subtree rooted at v is replaced by a leaf of the appropriate value.

Otherwise, it is the case that the subtree rooted at v already describes operand A within

R(v), so the subtree is left unmodified.

Next, consider the case in which v is a leaf node and some portion of B's boundary

lies in the corresponding cell R(v). As before, the result of the set operation will be either

--------- --- ----------------

00 left ooerand right operand result

U* S in in
S out S
in S in

out S S

n* S in S
S out out
in S S

out S out
-* S in out

S out S
in S*S

out S out

58

homogeneous, or defined by the other operand, in this case, B. If the result is homogenous,

the leaf retains its value and the portion of B's boundary lying in the cell is discarded.

Otherwise, a new subtree rooted at v is constructed to describe B within R(v). This is done

using the boundary-to-BSP conversion algorithm presented as procedure Build..BSPT in the

previous chapter. The input to the algorithm is the boundary of B lying in R(v), and the

output is a labeled-Ieaf BSP tree. This tree takes the place of the leaf v.

TABLE 3. Handling the Termination of Recursion in Incremental Evaluation

Disposition of B's boundary Disposition of subtree rooted at v

Finally, consider the case in which v is a leaf and no part of B's boundary lies in

R(v). Both operands are homogeneous in R(v). If the set operation does not depend on B,

the in/out test need not be run. (This is the case at an in-leaf for union and at an out-leaf for

intersection.) Otherwise, the test is run and its result becomes the value of the leaf. Table 3

summarizes the handling of the base cases of this recursive algorithm.

Figure 25 illustrates an example of the algorithm in 2D. In (1) and (2), the initial

geometry and representations are shown: a BSP tree representing a triangle A, and a set of

edges (pq,qr,rs,sp) representing the (counterclockwise) boundary of a quadrilateral B. A

difference operation is to be performed. As the first step, the orientation of each edge of the

quadrilateral is reversed, and the set operation becomes an intersection of A and the

quadrilateral (qp,rq,sr,ps).

Starting at node x, the edges are found to all lie in H1C. The in/out test would
+

determine that H1Cis exterior to B. But, the test need not be run, since subtree x.right is an

out-leaf, and the result of the intersection is therefore an out-leaf. The edges are then

partitioned with Hy. This results in two sets of edges, (s's,sr,rr') and (r'q,qp,ps'). The edges

Classification of cell of T Result of in/out test

op containing (part of) B'I boundary for R(v)
in out in out

U. discard build tu e discard, replace with "in" keep

n. build tree discard keep discard, replace with "out"

/\
/\

0\

/\
z

in out

S9

11: -. (pq,qr ,TS,sp) 11:

/\
y out y out n* out

/\
'ut out n* (s's.sr ,Tr')z

/\
in n* (r'q,qp,ps') outn* out

(1) Initial geometry. (2) Initial representations. (3) BSP tree after classifying (qp,rq,sr,ps).

(4) Resulting partitioning.

11:

/"-
Y out

/"-
Z out

/"-
u out

./ "-In v
. / "-
ID W

. / "-ln out

(5) Final BSP tree.

Figure 25. Example of an Incremental Set Operation

(s's,sr,rr') lie in the right subtree of y, au out-cell, and so are discarded. The remaining

edges are tested to Hz' and found to all lie in Hz' At this point, the algorithm reaches a leaf

of the tree. The leaf's value is "in", and Table 2 shows that an intersection of an in-cell with

another object is described by that other object. This second object is defined by the edges of

B lying in the in-cell. Procedure BuildJJSPT is then used to construct a BSP tree defining it,

and this tree replaces the former leaf.

60

CSG Evaluation

A CSG evaluation problem P is a pair (T, R), where T is a CSG tree and R is a

convex region of d-space on which T is defined. The result is a BSP tree T such that

D~not~,,(T) = D~not~"(T). Starting with the problem P = (T, R), the algorithm chooses a

hyperplane H to partition the problem into three sub-problems, PZeft= (TZeft' R n H),
+

Pright = (Tright ' R n H), and PcopltUUlr= (T, R n H). Since H has partitioned the problem

P = (T ,R), we can solve each independently, and return the union of the results as the

solution to P.

The algorithm returns a BSP tree whose root node is associated with the chosen

hyperplane H, and whose left and right children are the results of the recursive evaluation of

PZeft and Pright' respectively. The recursion is terminated when the CSG tree T can be

evaluated directly. (PCOpzQ/UJ1'need not solved completely. Solving for bd PcoplQ/UJ1'will usually

suffice for a boundary-augmented BSP tree. This can be done at a later stage, once the BSP

tree has been built (Section "Boundaries").)

The hyperplane H is chosen to embed some face of a primitive of T. A heuristic

examines some set of possible hyperplanes and chooses the "best" one. As is the case in the

construction of BSP trees as a preprocessing step for visible surface rendering, the choice of

partitioning planes, especially near the root of the tree, can greatly influence the resulting

tree. In the case of CSG evaluation, it can also effect the efficiency of the evaluation itself.

Since the number of possible trees is at least factorial in the number of faces, we take the

standard approach of using heuristics to guide us in tree construction. The heuristics used are

addressed in the discussion of the implementation of the algorithm, in Chapter VI.

In dividing the problem into three sub-problems, the boundary representation of each

primitive of the CSG tree is partitioned with the hyperplane. If any primitive has no part of

its boundary on one side of the hyperplane, it is homogeneous in that region. Its position in

(Im.mn.nUn

sbt

(1) Initial geometry

(4) subproblems before simplifying

(6) final partitioning

U'<

/ \
.. (rs.st.tr)

'Tlt!r: U*
/ "

(m'n,nl') (st,tr)

61

(3) partitioning by H

'Trighr: -'/ "
(lm,mm'.!'!) (op,pq,qo)

(5) subproblems after simplifying

out

(7) final BSP tree

1h

Figure 26. An Example of CSG Evaluation

/ \
(op.pq.qol

(2) initial CSG tree

'Tltfr: U* 'Tri!!hr: U*
/ " / "-. (st,tr) -' out

/ " / "
(m'n,nl') out (lm.mm'.!'!) (op.pq,qo)

62

the CSG tree for that side (T/~ or Tright) is replaced with a trivial BSP tree (an i1l or out leaf).

This can be done because if prim n R = 12$ or prim n R = R, then either

DI!1Iotl!s(prim,R) = DI!1Iotl!s(out,R) or DI!1Iotl!s(prim,R) = DI!1Iotl!s(i1l,R),respectively. The

classification of this trivial BSP tree, i1l or out, depends on whether the region to that side of

the hyperplane is in the interior or exterior of the primitive, respectively. The technique to

determine this is presented in the next section.

The eSG tree T/~ (similarly, Tright) is thereby derived from T in such a way that

De1lotes(T/~,R n H) = De1lotes(T,R n H). The eSG tree is then simplified, using the

rules given in Table 2. Note that this process also does not change the set represented by the

tree. If the tree is pruned down to a single i1l- or out-leaf, the problem in that region has

been completely solved. When all sub-problems are completely solved, the BSP tree

represents the set defined by the CSG tree.

In Figure 26, (1) and (2) Show the input to the algorithm; (3),(4), and (5) depict the

first partitioning into subproblems; (6) and (7) show the output of the algorithm. Figure 27

presents a pseudo-code description of the algorithm.

In/Out Testini

A fundamental step of both of the set operation algorithms presented in this chapter

and the algorithm to construct a BSP tree from a B-rep (presented in Chapter llI) is the

detection and classification of regions homogeneous with respect to a (portion of a) B-rep.

Detection is simple: a homogeneous region contains no part of the boundary of the B-rep.

Classification requires determining whether the region lies wholly to to interior or exterior of

the set represented by the B-rep. In the B-rep-to-BSP algorithm presented as Procedure

Build-BSPT in Chapter ill, classification was made trivial by restricting hyperplanes to those

embedding a face of the (single) B-rep. This is not generally the case for the set operation

63

procedure Evaluate_CSG (T : CSGTree) return. BSPTree

f := choose a face of a primitive of T
v := new BSPTreeNode
Hv:'" Ht
<T,eft ,Trlght> :... SpllCCSG (T, Hv)

TJeft :... Slmpllfy_CSG (T'eft)
If TIeftrepresents 0 then

vJeft := new "out" leaf

el.e If T'eft represents U then
vJeft := new "In" leaf

el.e

v,left := Evaluate_CSG (T'eft)

(* similar code for Tright *)

return v
end; (*Evaluate_CSG*)

procedure SpUCCSG (T : CSGTree;
H : plane_equation) return. <CSGTree, CSGTree>

If T Is not a primitive then
T'eft := copy (T)
Tright := copy (T)

<T,eft,left, Trt htJeft> := SpUCCSG (T,left)
<T'eft,rlght, ~ght,right> := SpULCSG (T,right)el.e

<T'eft' TrI ht, T > ,-g coplanar ,- partitionT withH

If TIeft = 0 then

If T,eJt= TesUn/out (H TTrtght= 0 then ' coplanar'Tright)

return <T TrI~ht= TesUn/out(H T
end; (*5pllCC5G *left'Tright ' coplanar'T'eft)

Figure 27. Algorithm for eSG Evaluation

algorithms, or for B-rep to BSP conversion using arbitrary hyperplanes.

This section presents a method of classifying regions homogeneous with respect to a

B-rep when no face of the B-rep lies in the "final" hyperplane. This "final" hyperplane is the

one which partitions the current region of interest, resulting in the detection of homogeneity

in one of the two resulting sub-regions.

64

Denote the portion of the boundary representation lying in R(v) by B". Note that

faces of B lying entirely in bd R(v) are not included in B". Assume in the following
+

discussion, without loss of generality, that B" lies entirely in H" ' Le., in R(v.right). The

status of R(v.left) with respect to B must be determined. (See Figures 28 and 29.)

This test is relatively simple if restricted to boundary representations of convex

polyhedra. A representative point in the (interior of the) sub-hyperplane of H" could be

tested for inclusion in the ,back half-spaces of all faces of B". If the representative point is

"behind" all of these faces, then R(v.left) lies in the interior of B. If the representative is "in

front" of any face, R(v.left) C ext B. The representative point for a sub-hyperplane is

simple to determine if each hyperplane embeds some face of a boundary representation. In

the implementations, the centroid of three non-collinear vertices of this face is used as the

representati ve.

A test is now presented that handles arbitrary polyhedra. The "ray test" [Laid86]

could be used, counting intersections with bd B along a ray emanating from a representative

point of the sub-hyperplane. However, this would either require testing the ray against the

entire boundary of B, or testing the ray against B", and if it did not intersect B", repeatedly

perturbing the ray until it did so. The test presented is not based on ray-casting, uses only

B", and returns the answer on the first try. Let b be the vertex closest to H of B". The

closest vertex is determined during the partitioning of B" by H,,: each comparison of point to

hyperplane returns the signed distance of the point from the hyperplane. Let p be a

representative point on the sub-hyperplane of H".

In 2D, the situation is as pictured in Figure 28. Vertex b is either in bd R(v) or in int

R(v). If b lies in bd R(v), then there is a single edge e in B" incident with b. (Otherwise a

second edge would lie in bd R(v) or ext R(v), which contradicts the definition of B".) If P

lies in He+, then R(v.left) lies in the exterior of B. Otherwise, R(v.left) is in the interior of

6S

/rn- :-_n~-_n7
\ "'. I

\ I
\ ~

\ '
\ "

\ '
\ Hv ' , R(v)'--- ,'

~
r--~ I

I . I

,t'

~
,.. "

(el I
\ b "
" e2 , ~

\ "
\ ,
" H,. ", ,,' R(v)'--- '

(a) closest venex in boundary of R(v). (b) closest venex in interior of R(v).

Figure 28. In/Out Testing in 2D

B. H b is in int R(v), b is incident with two edges, el and e2. The region R(v.left) is in the
- -

exterior of B if el and e2 lie in each other's back halfspace, i.e., if de He2 and ~2e Het.

This is the case when b is a point of "local convexity" [Lay82] of B. Otherwise R(v.left) is in

the interior of B (and b is a point of "local concavity").

In 3D, the cases are similar: either b lies in bd R(v) and is not shared by any other

face of B", or b is shared by more than one face of B" (and may lie in either bd R(v) or int

R(v». The test for the first case is identical: p is tested against the hyperplane of the single

face containing b, with the same results. (Figure 29(a» When b is is shared by more than one

face of B", each pair of sharing faces defines an edge which shares b. (Figure 29(b).) Select

the edge which forms the smallest angle with the plane H". This is the "closest" edge of B" to

H" in the neighborhood of b. H, in a local region of b, f1 and f2 are in each other's back

half-space, then R(v.left) is in the exterior of B (b is a local convexity). Otherwise, R(v.left)

is in the interior of B. To determine whether or not the faces lie in each other's back half-

spaces, it suffices to consider if a particular vertex of one of the faces lies in the other face's

~---T=-==t]~-~
l A 11

I 1 I I
I I I I
I 1 H.. : I

I I
I I
I 1
I 1
1 1
I 1
1 1-r-~
1 '
1 '- -- - ---'- -_.Jf'

(a) point b belongs to only one face.

66

r--~T====hJ~-'1 1 1 1
1 1 I I
I

YX2
.1 I1

I: I 1
I: H I 1v I

I 1
I 1
1 I
1 I
1 I
1 I
I I-r-~
1 'I,'Jf

b

1
I n ~ I--
I ,,"
I ,,"
k":._____---

(b) point b is shared by more than one face.

Figure 29. In/Out Testing in 3D

back half-space.

Vertex b is connected by an edge to two vertices of ft. One of these Hes in edge e,

and hence in f2. The other vertex, not lying in £2, is tested against Hn. If it Hes in Ha' ft is

in f2's back half-space. Since face normals are consistently outward-pointing, and ft and f2

share an edge, then it must also be the case that f2 is in ft's back half-space, and R(v.left) is

can be used.

then in the exterior of B. If ft and f2 are both convex, then any vertex of ft not lying in f2

the simplest test can be chosen.

It may happen that there is a tie for closest vertex. In this case, the vertex that allows

BSP Tree Reduction

Once a BSP tree has been constructed as the result of the evaluation of a set

will not change the set represented by the BSP tree.

operation, it may be possible to reduce the tree by eHminating certain nodes. This reduction

(BSP tree reduction is similar to

quadtree condensation [Hunt79].) Two cases in which this reduction is possible are

identified.

67

BSP tree of that classification.

The first case occurs when the subtrees of a node the node can be replaced by a trivial

u

/\
w out

/\
x out

/\
y out

/\
z out

/\
in in

(a) (b)

Figure 30. BSP Tree Before (a) and After (b) Reduction

(Node z in Figure 30(a).) This is detected during construction of the BSP tree. Note that no

boundary polygons could lie in the sub-hyperplane of such a node. Such a hyperplane serves

no purpose. since it partitions a homogeneous region.

It is also possible to remove a node that has a trivial BSP tree as one child and has no

part of the boundary of the set in its sub-hyperplane. (Node u in Figure 30(a).) The non-

trivial subtree replaces the node in the tree. Note that this may alter the sub-hyperplanes of

descendants of the node removed. allowing those sub-hyperplanes previously bounded by the

removed node's sub-hyperplane to extend into the region previously represented by the trivial

BSP tree. (The sub-hyperplane of node w in Figure 30 is an example of this.) This second

case is detected after processing each node for boundary polygons.

w

/\
X out

/\
Y out

/\
in out

68

Boundaries

In the discussion of BSP tree algorithms for set operations, whenever a face was

found to lie in a sub-hyperplane, it was appended to a list of faces lying in that sub-

hyperplane. In this section, algorithms to process these faces are discussed. The algorithms

yield faces lying in the boundary of the set represented by the BSP tree.

Since the boundary of the result of any regularized set operation is a subset of the

boundaries of the operands [Requ78], the boundary in the sub-hyperplane will consist of a

subset of the polygons on this list. Information is not maintained about which regions of

each sub-hyperplane are "in" or "out": the subtrees of the sub-hyperplane's node are used, as

was done for point classification. The evaluation of a node's subtrees must be completed

before this can be done.

CSG Evaluation

Each list of polygons lying in H can be classified separately by applying the polygon

classification algorithm of Chapter m. The resulting polygons with on classification are

retained. It may be possible that more than one of these resulting boundary polygons

overlap. To eliminate these, a 2D union operation can be performed on all coplanare

boundary polygons of each orientation. This can be done with a 2D version of the CSG

evaluation algorithm.

An alternative approach reduces the number of times polygon insertion is performed

by increasing the amount of work done in the 2D phase. During set operation evaluation, a

single list of coplanar boundary polygons from primitives is kept at each node. When a

coplanar polygon is detected when partitioning a primitive's boundary representation, before

adding the polygon to the list of coplanar polygons, it is checked to see if its normal is anti-

parallel to the hyperplane's. If so, the polygon has its orientation reversed, giving all

coplanar polygons the same orientation.

69

Once the CSG evaluation has produced a BSP tree, every sub-hyperplane with

coplanar faces is processed in order to determine which polygons lie in the boundary. The

technique for polygon classification presented in Chpater ill is used, classifying each coplanar

polygon with respect to both subtrees of the node. Begin by inserting the list of faces into

v.left, and inserting a copy of the list, with the orientation of each polygon reversed, into

v.right. Since any boundary polygon bounds one or more "in" cells on ita back side,

polygons from each insertion that are found to lie in "in" cells are kept.

This process eliminates any polygons, or portions of polygons, that lie in the exterior

of the set. Removal of polygons in the interior and redundant polygons on the boundary is

done with the "glueing" operation described below.

Incremental Evaluation

In the evaluation of an "incremental" set operation, A op B, not all sub-hyperplanes

need be processed to determine the coplanar boundary polygons. The polygons lying in

those sub-hyperplanes of A's tree that were found to lie entirely in the interior or exterior of

B, and which are retained in the result, are already correct. (For example, the face in

hyperplane x of Figure 31.) These nodes were either kept as is or deleted, along with their

boundary polygons. The sub-hyperplanes of subtrees created when faces of B fell in cells of

A are also already correct, their boundary polygons consisting of those faces of B. (E.g.,

those in hyperplanes u, v, and w.) The sub-hyperplanes in which additional work must be

done are those that were coplanar with a face of B, or that split a face of B (e.g., lying in

hyperplane y).

Whenever a subtree of node v is discarded, the boundary polygons which lie in the

partitioning planes of the subtree are discarded as well. H it is also the case that no face of B

is coplanar with Bv' the boundary polygons in Bv can also be discarded. This is so because if

one side of Bv is homogeneous with respect to B, such that the subtree for that region is

70

x
/"'-

y out
/"'-

z out
/"'-u out

./ "'-in V

. / "'-
iD W

. / "'-in out

Figure 31. The Result of Incremental Evaluation

discarded, then the region is homogeneous in the result. If it is also the case that no part of

B's boundary is in SHp(H..,), the sub-hyperplane is also homogeneous with respect to Band

thus homogeneous in the result.

If any face of B is coplanar with Hy, we retain it along with the boundary polygons of

A lying in Hy' Actually, two lists are maintained at each node, for polygons oriented parallel

appropriate list.

and anti-parallel to the normal of Hy. Faces of B coplanar with Hy are added to the

Due to the fact that a single set operation is being evaluated, not all coplanar

polygons need be inserted into both subtrees of v. Once v.left and v.right are evaluated, the

semantics of the set operation are used to determine which of the two lists of polygons to

classify with respect to which subtree, and which classification ("in" or "out") signifies that a

71

polygon is to be kept. For example, in the case of union, the cell(s) behind an outward-

pointing face of either operand will be "in" in the result. Also, it is the case that a polygon is

in the boundary when it bounds both an "in" cell and an "out" cell. Therefore, a (portion of

a) face of either operand will be in the boundary of their union when the cell lying in front of

the polygon is "out". So, to determine this, the faces oriented parallel to Hv's normal are

inserted into v.right, and the anti-parallel faces into v.left. The polygons lying in "out" cells

are kept. For intersection, the parallel faces are inserted into v.left, the anti-parallel into

v.right, and the polygons lying in "in" cells kept.

This eliminates any polygons not in the boundary, but there may be regions of the

boundary in which polygons overlap. This redundancy does not affect renderings of the

object, other than to possibly increase time and space requirements. H desired, the

redundancy can be eliminated by performing a "glueing" operation in 2D on the coplanar

polygons. This is described below.

The 'Glue' Operator

As mentioned above, inserting faces into the subtrees on either side of their

embedding hyperplane can leave redundant faces. The "glue" operator described below

addresses this issue, as well as providing a tool to construct a B-rep from the BSP tree. In

this latter sense, "glueing" is used to re-join faces that were split by hyperplanes in the course

of building the tree. One can say that the resulting B-rep is, in this sense, minimal.

TABLE 4. S f the 01 0 or-------- - - ----

A B AEf>B
same-on same-on same-on

flipped-on flipped-on flipped-on
same-on flipped-on not-on

flipped-on same-on not-on
not-on X X

X not-on X

72

The 'glue' operator is a sort of "exclusive or" operator. Regions of the plane

occupied by polygons of opposite orientation are replaced by the empty set. This occurs

when the region bounds "in" cells on both sides of the sub-hyperplane. Regions occupied by

more than one polygon, all of the same orientation, are replaced by a single polygon of that

orientation. Regions with no polygons remain empty. (Table 4.) This is similar to the

"regularization" operation in the algorithm of [Putn86].

The "glueing" operation is carried out in a manner similar to the eSG evaluation

algorithm of section 3.4, but in 2D with a 2D BSP tree. Given a set of polygons in a

hyperplane H", we construct a 2D BSP tree to evaluate the glue operator as follows. First,

for computational convenience, the polygons are projected orthogonally into the coordinate

plane x/=O, where x/ is the largest coordinate of Hy's normal. This involves limply dropping

the i-th coordinate. All computations (dot-products, edge-hyperplane intersections) are now

carried out in 2D.

A partitioning hyperplane (line) is chosen to embed an edge of some polygon. This

hyperplane is used to partition the problem into sub-problems, as was done in 3D. This

process continues until the sub-problem can be solved directly. This can be done when

either: (1) all polygons in the region are of the same orientation, and at least one of these

covers the entire region, or (2) when the region is covered by two polygons of opposite

orientation.

If the polygons in a region are replaced by a single polygon oriented in the same

direction as H", the leaf is marked "same-on". If the result is a polygon with the opposite

orientation as H", the leaf is marked "flipped-on". Otherwise the leaf is marked "not-on". It

is relatively straightforward to maintain vertex-list representations of the regions of the 2D

tree. The vertices of "same-on" and "flipped-on" regions must then be projected back into H".

If the plane equation of H" is Qx+by+cz+d=O, and the projection was done along the z-axis,

73

then the coordinates of the projection of a 2D vertex (x' ,y') is (x' ,y' ,(-ax-by-d)/c).

Minimizini The Boundary

The glue operator can also be used to produce a "minimal" boundary representation

of the polyhedron. Essentially, a set of faces of dimension d-k that share faces of dimension

d-k-l are replaced by a (possibly concave) d-k face. This is done by applying a glueing

operation while recursing on the dimension of the faces making up the boundary.

,,"
,/"

/,
I

---------------.
/,," I

/" I
,," I

/" I

// I
,,/ I

/" I

// I
/ I

/ II
I
I
I
I
I
I
I
I
I
I
I

B

A

I
I
I
I /
I "
I ",,"
I /"
I /
I /,,/
I /
I /,,"
1/

/""
/

/
"

,,"""
/

,,"
,,"

/"

I
I
I
I
I /
I ",,"
I /
I //
/

Figure 32. 3D Geometry of Objects A and B

The technique is presented by means of an example, seen in Figure 32. Two

polyhedra, A and B, are to be combined via union using the CSG evaluation algorithm. This

74

results in a 3D BSP tree. Coplanar polygons are kept at the corresponding node of the 3D

BSP tree until evaluation is complete, as usual. And, as before, they are then inserted into

the subtrees of that node, and pieces landing in in-cells are retained. Assume the result of

this insertion for the "front" side of the object in Figure 32 is the four polygons in Figure 33.

All four polygons share the same orientation.

Figure 33. Polygons Lying in the Front Plane

c

same-on

b

75

Figure 34. Result of 2D glue operation

The 2D glue operation is then performed, as before, using a 2D BSP tree. This

removes the overlapping polygon (Figure 34). Now, instead of stopping once the glue has

been performed, we associate each remaining polygon boundary (edge) with the internal

node of the 2D tree corresponding to the partitioning line in which the edge lies.

a

/ "-
b not-on

/ "-
c not-on

/ "-
d not-on

/ "-
same-on e

,/'

same-on t
/ "-

same-on not-on

76

e: b:

. 1 . --L-.L-. t .

not:n I not-on I sa:e-on I n:t-on
~

not3 same-on ~ame-on ~-on
~

~

Figure 35. Examples of lD glue operation

c

a

.-----,
I
I
I
I
I
I
I
I
I
I
. .-----

b

Figure 36. Fragments of the Boundary Remaining After Glueing

Next, a ID glue operation is performed on the edges lying in each hyperplane of the

2D tree. A ID BSP tree is constructed for each such hyperplane (line). Consider the

hyperplane of node e (Figure 35). The region shared by oppositely oriented edges is

cancelled out by the glue operation and is marked as "not-on," and the region spanned by the

77

left-over edges is marked "same-on." After glueing is complete, we associate boundaries

(vertices) of the remaining "on" regions with the hyperplane of the ID tree in which they lie.

Finally, a glue operation in OD is performed, operating on coincident vertices at

internal nodes of the lD trees. (Figure 36) This will cancel out the vertices at the juncture of

two adjacent "on" regions in the lD tree, as in those for nodes band c. The recursion now

terminates.

It remains to re-join the constituents of the minimized boundary, shown in Figure 36.

The degree to which these boundary elements are rejoined depends on the richness of the

boundary representation being maintained. Assume each polygon is to be represented as a

list of vertices. The representation is constructed while unwinding the recursion.

After glueing vertices in OD, a traversal of each ID tree yields a set of connected line

segments as follows. The tree is traversed in an in-order fashion, such that leaves are

encountered in an order corresponding to the geometric left-to-right order of the cells along

the line. The order in which the children of a given node are visited is determined by

evaluating the hyperplane equation of each node at -co. The child corresponding to the side

of the hyperplane on which the point at - co lies is traversed first. For example, in Figure

37, at node a, traversal first proceeds to the right child, then at node b to the right child

again. The first leaf encountered should be a "not-on" cell if the polyhedron is bounded.

After the first child of a node has been traversed, upon return to the parent, the

coincident vertex, if any, returned by the OD glue is output. Traversal then proceeds to the

other child. Pairs of vertices output by the traversal correspond to maximally connected line

segments lying in that hyperplane of the 2D tree.

After generating the edges of the polygon in this fashion, pair wise comparison of

vertices' locations can be used to join adjacent edges. This last step is not always necessary.

78

a

~ -----
c b

/ \ / \
not-on e d not-on

/ \ / \
on not-on on on

Figure 37. A lD BSP Tree

A set of bounding edges for each polygon is actually the desired input for some scan-

conversion algorithms [Fole83]. Figure 38 gives pseudo-code for the algorithms just

discussed.

The above discussion does not discuss all possible opportunities for minimization, in

that it does not address the situation in which coplanar faces lie in different sub-hyperplanes.

In Figure 39, hyperplanes band c contain edges AB and CD, which should properly be

replaced with the single edge AD in a "minimal" boundary. This situation could be handled

in the "Join_boundaries" step of the Minimize_boundary procedure. The hyperplane

equations of the internal nodes of the tree should be examined to find those that are

identical. This identity can be maintained during construction of the tree. Each set of such

nodes should then be tested to see which have adjoining sub-hyperplanes. (A method for

generating sub-hyperplanes in 3D is given in Chapter ill.) Those sub-hyperplanes that do

"touch" should then have their coplanar boundary elements glued at the juncture. This can

be accomplished by performing the glue operation for all coplanar sub-hyperplanes at the

79

procedure Mlnlmlze..Boundary (Dimension: Integer;
BSPT : BSPTreeNode) return. Boundary-rep

for e.ch Internal node of BSPT do
LowerDimenslonalBSPT := Glue (coplanar faces at v)
If Dimension> 0 then

Mlnlmlze..Boundary (Dlmenslon-1, LowerDlmeslonalBSPT)
return JoIn..Boundaries (Dimension, BSPT)

end; (* MlnlmlzeJ!oundary *)

procedure Joln..Boundarles(Dimension: Integer;
BSPT : BSPTreeNode) return. Boundary-rep

o..e Dimensionof
0: If BSPT Is null then

return 0
el.e return the vertex

1: return Traverse_1D(BSPT)
2: return JoIn_lncldenLedges(BSPT)
3: return Joln_incldenUaces (BSPT)
etc.

end; (* Joln..Boundarles *)

procedure Traverse_1D(T : BSPTreeNode) return. Boundary-rep

If T Is not a leaf then
d := evaluate T's hyperplane equation at -co

If d < 0 then
flrsLchlld := T.left
second_child := T.rlght

el.e
flrsLchlld := T.right
second_child := T.left

Traverse_1D (flrsLchlld)
If there Is a boundary vertex at node T then

append the vertex to the B-rep (of the edge)
Traverse_1D (second_child)

end; (* Traverse_1D*)

Figure 38. Algorithm for Boundary Minimization

same time.

Note that a "complete" boundary minimization that includes this last step produces a

B-rep no longer associated with the BSP tree. In other words, a conversion from a BSP tree

to a B-rep has been accomplished.

80

b a c

A ale

a

/
b

/ "
" c
/ "

Figure 39. Adjacent, Collinear Edges in Different Sub-Hyperplanes

Set Operations on BSP Trees

In this section, an extension of the set operation algorithms presented in this Chapter

are discussed. This extension involves the use of operands represented by specially

augmented BSP trees. By showing how such a BSP tree can be split and tested for

homogeneity, they can be easily incorporated into the previous algorithms.

The augmentation used is in addition to leaf-labels and boundaries. Each internal

node of the tree is augmented with a boundary representation of the associated sub-

hyperplane. In 3D, the sub-hyperplane is a convex polygon, and can be represented by an

ordered list of vertices. An algorithm to determine such a representation of a sub-hyperplane

was presented in Chapter m.

Splittini a BSP Tree

In both of the algorithms for set operations presented in this Chapter, a fundamental

81

step is the splitting of an operand. This occurs in the course of partitioning a problem (X,

R(v» with a hyperplane Hv' forming two, hopefully simpler, sub-problems. In the sequel,

all asp trees are augmented with explicit sub-hyperplanes, unless stated otherwise. To split a

BSP tree augmented with explicit sub-hyperplanes, the following case analysis is used.

Consider a BSP tree T rooted at node v. T is defined in R(v). A hyperplane H is to split the
- + - +

tree T, returning two trees T and T , lying in H nR(v) and H nR(v), respectively.

Denote the sub-hyperplane associated with a hyperplane H by SHp(H).

(l)H=Hv (2) H = -Hv

",'" "
/ "

/ ,

~
/~ "']

,/ H Hv "
C 1
I 1
I 1
I 1
I 1
I ,
'--- --- --11

,., ,, ,, '

\~ ---'-
(5) SHP(Hv) C H+

SHP(H) C Hv +
(6) SHP(Hv) C H-

SHp(H) C Hv.

'",
C
I
I
I
I
I'-----

(3) H intersects Hv

"
",/ ",'" "

~

'

1
, '--'"], V 1

C 1
I 1
'H 1

_- --- -j/
(7) SHp(Hv) C H-

SHP(H) C Hv +

Figure 40. Case Analysis for BSP Tree Splitting

""-
, -','"

'

l
'

,'" H

\~-- ---

(4) SHP(Hv) C H+
SHp(H) C Hv.

,., -/ -,'" ,,'"
'"

'"
C
I
I
I
I
I

'-- ---

'-""
'],
1

1
1

1
1

1
1

,
I

(8) v is a leaf

The first major division in the case analysis is to consider whether or not H intersects

SHp(H,,). If so, there are three possible ways in which this might occur. If SHp(Hv) lies

/
" , " "

,'" " "' ,/ , "/ , / ,/ " / ' "' , // '
]

/ '
]

/ /
C 1 C 1I , I 1I 1 I ,I 1 I

Hv
11 1I H 1 I 1I 1 I 1

'----- 1 '----- 11 1----I ----I

82

entirely in H, then either H" = H or H" = -H (Cases 1 and 2, Figure 40). Otherwise,

SHp(H,,) lies in both half-spaces of H (Case 3). Note that SHP(H,,) is an open set, and

therefore if H intersects the boundary of SHp(H,,), this is not considered and intersection

with SHp(H,,).

Four more cases of the analysis deal with the possibilities when SHp(H,,) does not

intersect H. (Note that H may intersect H" in these cases, but that the intersection would
+

occur outside of R(v).) The first two cases handle SHp(H,,) lying in H . Either SHp(H) is

- +
in H" (Case 4) or in H" (Case 5). An analogous pair of cases (Cases 6 and 7) exist when

SHp(H,,) lies in H .

The last case occurs when v is a leaf (Case 8). Figure 41 gives the algorithm.

- +
The handling of each case is now discussed. In cases 1 and 2, T and T are trivial to

determine, since Hand H" are coincident, and H" provides a ready-made partitioning of T.

In case 1, H = H", so T
+

= (the tree rooted at) v.left, and T = v.right. In case 2,
- +

H = -H", and T = v.right, and T = v.left.

In case 3, things are more complicated. H intersects SHp(H,,), R(v.left) and

R(v.right). Both subtrees of v are split with a recursive application of the algorithm to v.left
+

and v.right. This returns four new BSP trees. Call the results of splitting v.left T,eft and
- + - - +

T,tft ' lying respectively in Hand H . Similarly, splitting v.right yields Tright and Tright .

SHp(H,,) must also be split, using the algorithm of Chapter m. Call these results SHp and
+ .

SH P . (Figure 42.)

- +
These elements can now be combined to form the result trees T and T . The root

of each tree has the same hyperplane equation, H". The subhyperplane of the root of T is
- - -

SHp . The left and right subtrees of this root node are T'eft and Tright . Similarly, the sub-
+ + + +

hyperplanes of the root of T is SHp , and its subtrees, T,eft and Tright .

83

procedure SplltBSP(v : BSPTreeNode; H : hyperplane)

return. < LefLTree.RlghLTree: BSPTreeNode >

If v Is a leaf then (*case 8 *)
return < copy(v),copy(v)>

el.e
Evaluate H at allvertices of SH p (v)
If allvertices evaluate to zero then

If H = H" then(case 1 *)
return < v.left,v.rlght>

el.e
(* case 2 *)
return < v.rlght, v.left >

el.e If there Is at least one vertex on both sides of H then
(* case 3 *)

< lefLmlnus,IefLplus> .. SplltBSP(v.left, H)
< rlghLmlnus,rlghLPlus> .. SplltBSP(v.rlght, H)

LefLTree ..new BSPTreeNode
RlghLTree ..new BSPTreeNode

< SHp(LefLTree), SHp(RlghLTree), donLcare > ..SplltPolygon(H, SHp (v))

LefLTree.left..lefLmlnus
LefLTree.rlght ..rlghLmlnus

RlghLTree.left..lefLplus
RlghLTree.rlght.. rlghLplus

el.e
return < LefLTree,RlghLTree >

d .. evaluate Hv at any pointIn H n* R(v) +
If (d < 0) end allvertices of SH p (v) are InH then

(*case 4 *)

< lefLmlnus,lefLplus > ..SplltBSP(v.left,H)
v.left..lefLPlus
return < IefLmlnus,v >

el.e
(* cases 5, 6, and 7 are similar to 4 *)

end; (* SplltBSP *)

Figure 41. Algorithm to Split a BSP Tree

Cases 4 through 7 are all similar, so only case 4 will be discussed. In case 4, SHp(H)

lies in H+, and SHp(H) lies in Hy- (Figure 43). To determine which side of Hy contains

SHp(H), a point in SHp(H) is tested against Hy' Since no part of H intersects R(v.right),

84

""""
('
\
\
\
\
\
\
\
\
\
\
\
\

""'"
" '""""""""

"""HV;

T-;

ASHP-

T -left T -rightT -right

T + right

T+:

XSHP+
T+ left T + .nght

T -left
/

,,
T + left -',,/

Figure 42. Sub parts Generated in Case 3

,,'-," '" '" '" '
,," "," '" '" -,

T-; T-left

""",,
,," 1c

\
\
\
\
\

" T-left\
\

" 1\

\.._----

T + left

, ,
, , , , '.,I,

/
/,

/,
/,,,,,,,,,,,,

T+: A SHP(H,)
T+ left V

.
.nght

Figure 43. Sub parts Generated in Case 4

that subtree need not be split. Only the tree rooted at v.left is split, with a recursive

85

+ --
application of the algorithm. The results are T,ejt and T,eft . The result tree T is T,ejt .

+ +
The result tree T is formed by replacing v.left with the root of T,ejt . SHp(Hy) and v.right

are left unchanged. The fact that v.right need not be considered in this case is yet another

benefit derived from the structure provided by the BSP tree.

The final case, case 8, involves splitting a cell corresponding to a leaf v of T. This

simply requires returning two leaf nodes, each with the same label as v.

Set Operations

Algorithms for set operations on BSP trees take the same basic form as those on B-

reps. A partitioning process continues until a region homogeneous with respect to all

operands (or all but one operand) is found. First consider the incremental algorithm. Both

operands are represented with BSP trees augmented with sub-hyperplanes. As before, the

second operand is inserted into the first. This involves a pre-order traversal of the first tree,

splitting the second tree with the hyperplane of the current node at each stage of the

traversal. Homogeneity of the first operand is determined as before, when a leaf of the first

tree is encountered. To determine if one of the results returned by a splitting operation on

the second operand is homogeneous, tree simplification is performed. A homogeneous result

will simplify to a leaf.

A CSG algorithm on BSP trees is also a straightforward extension of CSG on B-reps.

Partitioning hyperplanes are chosen as desired, splitting of BSP trees is performed as above,

inlout testing is done by tree simplification, and CSG expression simplification is the same.

Boundary-augmented trees are maintained in a manner identical to that for the B-rep

versions of the algorithms.

86

CHAPTER V

Ray-Tracing

And the principles governing
reflections in mirrors and other
smooth reflecting surfaces are
not difficult to understand.

- Plato's Timaeus

Ray-tracing has been used to generate some of the most realistic images sythesized to

date. The technique is based on principles from geometric optics, which models light as rays

that travel in straight lines, and describes changes in direction caused by reflection and

refraction. The rays are traced backwards from the viewpoint into the scene. (Figure 44.)

Ray-tracing facilitates the use of realistic illumination models, has been extended to a wide

range of primitives, and is conceptually straightforward. Its primary drawback is that large

amounts of computation are required compared to other rendering algorithms. The bulk of

this is spent in calculating the intersection of rays with the objects constituting the model. In

the simplest version of the ray-tracing algorithm, the ray must be tested against all objects in

the model, and the closest object chosen. This closest intersection point determines what is

visible from the ray origin when looking in the direction of the ray. Even though the

computation required is linear in the number of objects, the relatively high cost of computing

the intersection of a ray with an object can make rendering unacceptably slow for complex

scenes. This chapter addresses how the BSP tree can be used to speed up the ray-tracing

process.

Applyine Space Partitionine to Ray- Tracine

The ray-tracing problem is essentially a searching problem. By partitioning space

-0-
light source / I "-

~

viewer

shadow ray

viewing window

87

model

Figure 44. must ration of the Basics of Ray-Tracing

with partitioning sets such as spheres or planes, the ray can be intersected with these

partitioning sets in hopes of eliminating certain objects from consideration.

88

Since we are concerned with the closest object along each ray, we'd like to consider

the partitions in visibility priority order. A straightforward method of determining the

priority ordering is to find the ray's intersections with the space partitioning, sort them by

distance, and then consider the ray partitions in the sorted order. However, we can do

better. We can construct a representation of the space partitioning and use this to not only

partition the ray, but also to obtain the priority ordering. As we shall see, if the

representation is a BSP tree, the location of the ray origin determines uniquely this priority.

(This property also holds for the octree partitioning. Note that any octree partitioning can be

simulated with a BSP tree, and that the converse does not hold.)

Figure 45. A Ray Intersecting a Non-Convex Partition

The ability to determine a priority ordering for the partitions intersected by any ray

requires that all partitions are convex. If non-convex partitions are allowed, it is possible for

a ray to enter partition A, then partition B, and then re-enter partition A again. (Figure 45.)

If this occurs, any intersections with objects in A and B must be sorted to determine the

closest intersection. The only partitioning set which can be used to produce convex partitions

is a plane (or connected subsets of planes, as in the Voronoi diagram (see, for

example[Prep85]). A single plane partitions a convex space into two convex sets, and by

induction, all subsequent partitions will be convex. For each plane, the half-space lying on

89

the side of the plane in which the ray tail lies has priority over the other half-space.

Previous Work

The earliest and most common example of using space partitioning to improve

performance is the use of bounding \1o1um~s. If objects are placed inside a simple volume,

then a necessary condition for intersection of a ray with an object's surface is that the ray

intersects that volume. Spheres [Whit80] and rectangular parallelipipeds [Rubi80,Roth82]

have been employed for this purpose, and automatic selection and placement of 'tight-fitting'

bounding volumes has also been studied [Wegh84]. However, bounding volumes do not

produce a convex partitioning, nor are they generally disjoint.

There are problems inherent in the bounding volume approach. Bounding volumes

may not be disjoint: the bounding volumes of nearby objects may intersect one another, even

if the objects do not. If the ray enters the region where two bounding volumes intersect, the

contents of both volumes must be tested for intersection with the ray. Another problem is

that at least one concave partition will result. Concave partitions complicate priority

determination. If all partitions are conves, all ray-partition intersections are convex (line

segments). Determining the closest ray-object intersection then requires sorting only those

intersections within the single (convex) partition. If concave partitions exist, this sorting step

must consider all ray-object intersections in two or more partitions (those whose ray-partition

intersections are interleaved). (However, this can be avoided if no objects are placed in the

concave partition.)

Another approach is to use octrees [Glas84 , Thom87] in which only axis-aligned

partitioning planes are used (three at a time). It, like the BSP tree, forms a convex, disjoint

partitioning. (Recall that any partitioning by an octree can also be formed by a BSP tree.)

Computations involving axis-aligned planes are simpler than for arbitrary planes, but in

certain applications, limiting planes to be axis-aligned may prove to be unacceptably

90

restrictive.

In [Dipp84] , space is partitioned with 'generalized cubes.' These are topologically

equivalent to the cube, but have relaxed constraints on face planarity and convexity. These

relaxations allow the partitioning to be altered dynamically by moving one corner (shared by

eight partitions) at a time. This structure is designed for use in a multiprocessor setting, with

one processor assigned to each partition.

Glassner gives an algorithm that travels through the partitioning incrementally. The

octree is first traversed from the root to determine the partition containing the ray tail. If the

ray is found not to intersect any object in this initial partition, a point guaranteed to lie in the

next partition along the ray is computed. This point is used to (again) traverse the octree

from the root, in order to determine which partition that point lies in. The process continues

until an intersection is found. In [Thom87] , a more efficient algorithm is presented, that

takes advantage of several properties to improve running time. One of these is based on

coherence, the property that successive rays are usually only slightly perturbed from one

another. This is due to the fact that as rays are traced from the viewing position, they are

usually generated left-to-right aceross each scan line. (Note that coherence does not apply to

reflected or shadow rays.) At each level of the octree, the partitions entered by a ray will be

unchanged from those entered by the previous ray if the ray exits each partition through the

same face as the one the previous ray exited. Another technique used is to transform the

planes of the octree by the perspective transformation defined by the viewing parameters.

Rays from the viewpoint are then orthogonal to one coordinate axis, simplifying the ray-

plane intersection calculations.

The BSP tree and octree eliminate the problems of overlapping and concave partitions

experienced with the bounding volume hierarchy. This allows us to acheive the desired total

visibility priority ordering on the partitions intersected by any ray. The techniques also seem

91

amenable to automatic partitioning construction. This has been studied for the

octree[Glas84, Thom87] and for BSP trees in [Fuch80, NayI81]. Automatic partitioning

construction for polygonal CSG models is discussed in Chapter IV.

The BSP Tree Ray- Tracin~ Al~orithm

Given a generic BSP-tree, it is augmented by associating a list of objects with each

leaf. These objects are those constituents of the model that lie in the corresponding cell.

Since a BSP tree provides both a partitioning of space and a priority ordering on those

partitions, it is not only possible to restrict object-ray intersection calculations to volumes

intersected by the ray, but to perform this in the order of the volumes' priority. Determining

the volumes intersected by the ray and their priority is accomplished by traversing the tree

with a modified "insertion" algorithm.

The search for an intersection of an object with the ray begins in the cell containing

the ray's origin. The ray is first tested for intersection with the objects stored at the

corresponding leaf of the tree. If no intersection is found, we proceed to the immediately

adjacent volume intersected by the ray. This will be precisely the next volume (leaf)

encountered in the traversal. The algorithm is presented as pseudo-code in Figure 46, and

discussed below.

We represent the ray in parametric form, as two vectors, the ray direction D, and the

ray origin T. The segment of the ray being considered is represented with two parameter

values, tmill and tmax. Initially, tmill = 0, and tmax = OD. The procedure for inserting a line

segment, presented in Chapter rn, is modified so that whenever the ray is split by a

partitioning plane, recursion first proceeds to the subtree describing the halfspace that lies to

the same side of the plane as the ray origin. At each node of the BSP tree, we find the

intersection, tillt' of the ray with the plane at that node. (See the Appendix.)

tmtll<tillt<tmax' we partition the ray segment at ttllt (Figure 47(a». To determine which

If

92

procedure FlndClosestlntersectlon (ray: RayRecord ; t mln' t msx : real; v : BSPTreeNode)
return. Point;

var
dmln ' dmax...'tmt : real;
near, far: tj::)PTreeNode;
p : Point;

If v Is not a leaf then

dmln ..evaluate f1y at point corresponding to t]TIln
dmsx ..evaluate Mv at pointcorrespondingto rmsx

If d In> 0 or
(crmln= 0 and (dmsx > 0» then

near.. v.rlght; far.. v.left;
.1..

near.. v.left; far.. v.rlght;

tint .. parameter for Intersectionof ray and Hv
(cf.Appendix)

If (tmln < tint < tmsx) and (dmln "" dmsx "" 0) th.n

p.. FlndClosestlntersectlon(ray, tmln' tint' near);
If p = 0 then

p .. FlndClosestlntersection(ray, tint' tmsx' far);
r.turn p;

81..
r.turn FlndClosestlntersectlon(ray, tmln' tmsx' near);

.I.e (*v Isa leafofthe BSPtree, and Isassociatedwith
a representation of the contents of the corresponding
cell of the partitioning. The below call will
determine Ifthe ray segment has an Intersection with
those contents. *)

return ClosestObjectlntersectlon(ray, tmln' tmsx' v);

end; (*FlndClosestlntersectlon*)

Figure 46. Algorithm to Ray-Trace a Scene Partitioned with a BSP Tree

subspace to examine first, we must determine which side of the plane the point D* tlnin+ T

lies on, i.e., the near side. If the point at tlnin is in the partitioning plane, the near side is

defined to be that which contains the point at t/fIQJC.If t/fIQJCalso lies in the partitioning plane,

we arbitrarily choose one side as the near side. Since we are interested in the nearest object

along the ray, we first recurse on the near subspace with the segment [tlnin,tint]. If the

recursion returns with an intersection, we are done. Otherwise, we recurse on the far

halfspace with [tint,t/fIQJC].

93

tmax A

- . . tint
........ . ,

B

tmin
(a) (b)

Figure 47. Segmenting a Ray

If the intersection with the partitioning plane does not lie within [tmill,tmax](Figure

47(b» we determine that the ray does not intersect the far subspace and therefore we will not

search that subspace. Note that the ray must necessarily intersect the near subspace. It must

intersect one of the subspaces or else the traversal would never have reached this point.

Since the near subspace contains the point determined by tmill' we enter the near subspace,

returning with the results of that recursion.

Upon reaching a leaf, the ray is tested against the contents of that volume. Since the

contents may in general include objects that lie only partially within the volume, we must

consider only those surface intersection points within the bounds of the volume. This avoids

the potential problem shown in Figure 48. In the figure, object 1 is partially within the

partition, but intersects the ray outside the partition. If we simply returned this intersection

and halted our search, we would miss object 2, which is closer than object 1 along the ray.

The partitioning of the ray has already been computed during BSP tree traversal, so it is a

simple matter to test for object intersections lying within the bounds of the ray partition, and

hence within the volume.

94

tmin

Figure 48. A Problem to Be Aware Of

Splitting objects at partitioning planes can eliminate this problem. This splitting is

easily performed with polygons, but is more difficult, for example, with solids defined by

quadric surfaces, or other non-linear primitives.

When the ray partition (ray segment) lies entirely in the partitioning plane, the

algorithm only searches one subtree. This brings up several issues. The first is that it is

possible for objects to intersect partitioning planes. This is a desirable property, since it is

not always possible to pass a plane between two or more objects without intersecting any of

them. (If one can guarantee no object intersects a partitioning plane, neither subtree need be

searched in this situation.) Second, we are only concerned with intersections with the ray

that intersect the interior of an object. Tangential intersections are therefore ignored. So, if

searching the tree to one side of the partitioning plane yields an intersection, a search of the

other tree should yield the same answer. This is the case because the only objects

intersecting the partitioning plane that are contained in only one subtree are those that

intersect the partitioning plane tangentially.

The choice of which subtree to search can cause aliasing. Noise can be introduced to

9S

reduce the aliasing by flipping a coin to determine which subtree to search in this situation.

If adaptive sampling [Mitc87] is being used, then this issue will be handled in the course of

antialiasing.

We should expect the number of partitions pierced by a ray to approach the cube root

of the number of partitions, as conjectured in [Dipp84]. Experimental results bear this out, as

discussed in Chapter VI.

To automatically generate the BSP tree, given the objects in the scene, a technique

similar to the median-cut technique discussed in Chapter ID could be used. This should

result in a nearly balanced tree.

Ray- Tracini of Polyhedra

If we use a BSP tree to represent polyhedral objects, we can use an extension to the

above algorithm to provide us with an efficient means of ray-tracing these objects. The

method of constructing a boundary-augmented BSP tree from an arbitrary set of polygons is

used.

Ray-tracing proceeds as before, except that when returning to an internal node after

searching for an intersection in the near subspace, we test the ray against the polygon(s) lying

in the partitioning plane. Since the ray's intersection with the partitioning plane was

determined when we first visited the node, we need only test that point for inclusion within

the polygon's boundaries when we return to the node. If this test fails, we proceed to the far

subspace. (We can use a 2-d BSP tree to represent the polygons in the hyperplane. Testing

the intersection point for inclusion in the polygon(s) is then performed with the point

classification algorithm presented in Chapter ID.)

If we know that the polygons form a closed surface, we can use this method to

represent polygonal solids. We classify segments of the ray as lying within the solid by

counting the intersections with polygons along the ray. (Care must be taken to insure that

96

only one intersection is returned when the ray passes through the juncture of two or more

polygons.) The polygonal solid can then be incorporated into a CSG modeler (discussed

below) that performs solid evaluation during ray-tracing.

It is also possible to ray-trace polyhedra represented by labeled-leaf BSP trees, which

were described in Chapter m. To ray-trace such a solid, we traverse the tree as before until

the first in-cell is encountered. (This is assuming the ray origin is in an out-cell. Were it in

an In-cell, the ray origin would be embedded in the solid. This is not an unreasonable

situation, however, when considering propagation through light-transmitting objects. In that

case, the tree is traversed until encountering the first cell of a different type than the one

containing the ray origin.) The value of tmillat this point is then the parameter value for the

visible surface, and the traversal can be terminated.

This is essentially the line classification procedure described in Chapter ID, with the

exception that the process always recurses to the near side first, and terminates when the first

in-cell is found. In that algorithm, a segment lying entirely in a partitioning plane must be

classified with respect to both trees. Here, however, we ignore on segements, as these reflect

tangential intersections. As above, we arbitrarily choose one subtree to search.

Usin~ BSP Trees in the Ray-tracin~ of CSG Models

CSG evaluation is often performed, not as a representation conversion, but during the

rendering (ray-tracing) operation itself. Each ray is intersected with all primitives of the

CSG tree, yielding a number of line segments along the ray. These line segments are then

used to evaluate the set operations in I-d for that ray. An example is illustrated in Chapter

ll. This is also called ray-casting.

BSP trees can be used to facilitate ray-tracing of CSG models in three fundamental

ways. The first is where the partitioning planes are not part of the visible model. First

consider a model composed of a set of objects each of which is modeled by a CSG tree

97

(DAG's can also be used for a more economical representation). If each object lies in one

cell of the BSP tree, we can place their respective CSG trees at the leaves of the BSP tree.

The "object" represented by the BSP tree is the (disjoint) union of the objects at its leaves.

This also suggests that the BSP tree could serve as a "primitive" to a higher level CSG tree,

which could in turn be at the leaf of a still higher level BSP tree, and so on. We call a BSP

tree whose parent is a modeling operation an embedded BSP tree.

The second use is where a polyhedral primitive of a CSG tree is represented by a

labeled-leaf BSP tree. This is, in fact, a special case of an embedded BSP tree. However.

using the polyhedron as an argument to set operations (to be evaluated by ray-casting)

prevents the termination of the search upon encountering the first intersection point with the

primitive. In general. all intersections must be returned: this can be considered as the

distinction between ray-casting (using intersections with a ray to solve the set operation in

lD) and ray-tracing (generating a visible surface rendering). There are a few exceptions to

this: when the path from the root of the CSG tree to the embedded BSP tree consists only of

union nodes and/or the left hand side of difference nodes. Then we know that the nearest

intersection point is indeed the surface of the object represented by the CSG tree.

Thirdly. we can speed up ray intersections with a complex object represented by a

CSG tree by partitioning it with a BSP tree and simplifying the CSG trees at the leaves. This

requires determining which partitions (convex polyhedra) are completely full or empty with

respect to some primitive(s). and then applying the simplification rules. as was done in

Chapter IV.

98

CHAPTER VI

Implementations

CSG evaluation

The eSG evaluation algorithm has been implemented in a dialect of Pascal running

under BSD 4.3 UNIX. A eSG expression is specified in a special-purpose language

implemented with the UNIX compiler building tools yacc and lex. Figure 49 shows an

example of an object description in the language. The operators union, intersection, and

difference are indicated by the characters "r, "&", and "-". Transformations are preceded by

the character ".". The user essentially defines a DAG (Directed Acyclic Graph) by defining

named objects and referring to these from other objects. Primitive objects are filenames of

files containing a simple boundary representation of the object, consisting of a list of

polygons, each represented by a (counterclockwise ordered) list of vertices. Operations that

can be used to construct more complex objects include: the transformations scaling, rotation,

and translation; the assignment of a color to the object (as red, green, and blue components);

the set operations union, intersection, and difference; binding an object definition to an

identifier, and referring to a previously defined object by its identifier. A special identifier,

"model," must be assigned, as it defines the root node of the DAG. The DAG so defined is

expanded into a tree by applying the transformations, associated with each path to a primitive

object, to the vertices of the boundary representation. This results in a tree whose internal

nodes are set operations and whose leaves are boundary representations.

A textual representation of this tree is input to the program, along with a number of

parameters that specify the heuristic to use in hyperplane selection. The candidat~ s~t is

99

object cube .. file lusr/tebo/parVdata/prlmslcubeend;
object cyl'. file lusr/tebo/parVdatalprlmslcyl20end;
object cone .. file lusrltebo/parVdatalprlms/cone20end;

object boundlngbox..
cube* (.ca.e 16161about 0 0 0;tran.'ate -8-8-.5)

end;

object outeredge..
cyl * (.ca.e 7.57.5 1 about 000)

end;

object blank..
boundlngbox & outeredge

end;

object mountlngJ1oles..
cyl * (tran..ate -4 -4 0)
Icyl* (trans.ate -440)
Icyl * (trans'ate 4 -4 0)
Icyl * (trans'ate 440)

end;

object Intake.s
cone* (trans.ate 10 -2.3)
Icone * (trans.ate -1 0 -2.3)

end;

object clutchplate..
blank co.or 1 00
- (mounting_holesco'or 0 10 IIntake co'or 0 0 1)

end;

object model ..
clutchplate * (.ca'e 0.2 0.2 0.2 about 0 0 0)

end

Figure 49. An Example of the CSG Object Description Language

defined to be those faces in the current partition that are to be considered for generating

partitioning planes. The test set consists of the entities (individual faces or spheres enclosing

entire primitives) against which each candidate plane is tested. Each set is specified by a

selection strategy that is to be applied to each primitive in the CSG tree of the current

(sub)problem. The selection strategy specifies if faces of the primitive are to be chosen at

random or in the order they appear on the list of faces of the boundary representation. In

100

either case, the number of faces of the primitive to be considered is specified as either a

number or as a percentage.

The possible outcomes of testing a candidate plane to a member of the test set are

"front", "back", or "split", according as the test set entity lies to the front of the plane (in the

positive halfspace), in back of the plane, or is intersected by the plane. The heuristic is a

function of the number of outcomes of each type that occurred when a candidate was tested

against the members of the test set. The candidate chosen is that member of the candidate

set that maximizes the heuristic. Four heuristic functions were investigated:

Heur 1 (front,bad,spUt) = (-Iback - frontl) - Wsplit* spUt

Heurz (front,back,split)= (front * back) - Wsplit* split

Heur3 (front,back,split) = front - Wsplit * split

Heur 4 (front,back,split) = - split

The weight wsplit is a parameter that allows "tuning" of the heuristics. In all

heuristics, the number of test set elements split by the candidate plane are weighted

negatively. This is because the splitting of a polygon requires both extra work and extra

storage. The first two heuristics try to balance the sizes of the two sides of the candidate.

The third tries to maximize the number of polygons in the front halfspace of the candidate.

The fourth simply tries to minimize the amount of splitting at each stage. The third heuristic

is motivated by the fact that the front halfspace of a face of a convex primitive will be in the

exterior of the primitive. Therefore, the primitive will reduce to a 0 or 1 in the sub-problem

for the front halfspace, thereby allowing us to simplify the tree. Choosing a plane that

maximizes the size of the test set that lies to the front of the plane attempts to maximize the

extent to which the pruning will be helpful.

Figures 50, 51, and 52 show the objects used in the test runs. The tests were run on a

VAX 8650 at AT&T Bell Laboratories. In all runs, the candidate set consisted of 5 faces

101

chosen at random, and the test set consisted of 100% of the current set of faces. The

program was run on each object using each heuristic, with w.plit = 0,2,4,...,20. (For Heur4'

only one run was made per object, since w.plit is not used.) Statistics on four quantities were

collected: the cpu time required by the program, and the size, height, and number of

polygons in the output BSP tree. The first data point in each graph contains a significant

amount of noise.

102

Figure 50. Test Object 'Clutchplate': 8 Primitives, 158 Polygons

103

Figure 51. Test Object 'Bracket': 7 Primitives, 106 Polygons

104

Figure 52. Test Object 'Brush': 7 Primitives, 49 Polygons

105

The graphs in Figure 53 show the CPU time (in CPU seconds) required by the

program for a range of values of w'plit. H~urz performs best on all test objects.

Figure S4 shows how the tree size, in number of nodes, varies with heuristic and

W'plit. Heur 4 performs best here, simply by choosing planes that minimize the number of split

polygons.

Figure 55 shows the height of the BSP trees produced. Here, H~urz gives the shortest

trees.

The results for the number of boundary polygons are less clear (Figure 56). H~urz

performs worst out of all heuristec on the c1utchplate, and best (for some values of w,plit) on

the bracket. H~ur4 performs well in this respect on all objects.

This early experience shows that Heurz is the best in terms of cpu time. Heurz

sometimes produces trees with a larger number of nodes, but with less CPU time than is

required by the other heuristics for the same objects. We speculate that using the product

(left. right) in Heurz favors equal sized sub-problems at early stages of the evaluation. This

improves the time requirements, but results in more split polygons, thereby increasing the

size of the BSP tree.

It is also the case that the largest variation in the statistics occurred for low values of

W'plit (0 through 4). This indicates that the "control" exerted by the negative weighting of

split polygons does not occur unless the coefficient w'plit exceeds a threshold of about 4, and

increasing it past this point exerts relatively less control.

qx1

20

15

10

5

.
...'

~":" ::.:_--------------

0 5 10 15 20

"'.pllt

~-, ~-~~
"

;;-
~

~

" --------"
r "

0 5 10 15 20

"'.pllt

"

- "",:.~.~,~,:-,:-'"'-""""'";~:-.:.~:'::"~
r----

I
I

I
I

I
I

I""
/"

0 5 10 15

"',pllt

Pilar. 53. CPU Second. VI. Wsplit

106

dutchp1ate

bracket

..Heur 1

Heur2

Heur3

Heur4 .

(horizontal)

_J brush

20

7.5

7

qxl 6.5

6

5.5

12

11

qx1
10

9

8

350

aodes 300

250

350

nodes

300

107

.....
~ ,

' ~~ "-----

". ..; ..------------------------

dut.chpIate

0 5 1510 20

W,plit

'"
I ,

~
""'I'" , ~

,..,..., :.' ,,/ '.~---"
., ' " """"" '

I

'
..I
..I

.. I
.. I

I

I
I .

,- --
I,,

I

......

bracket

HeUT1

0 5 10 15 2D ----- HeurZ

W,plit

Heur3

HeUT4

. (horizontal)

txush

,
,

-- : ':! ~.:.::.: ::::;:z:",-,- ... ~-w:o

450

400

350

nodes 300

250

200

0 5 10 15 2D

W,plit

Plaare 54. Nodes in BSP Tree vs. w,plit

height

hciaht

60 ---------------------------

.".oo...,. -""\
\

\
\

\
\

0 5 10 15

Wsplit

30

2S
;""""""""""""""",,, I

'" I
..- - -- ' "I" oo

r-~/ '...;
I

I
I

. I
.. /," J. I

.. /
.. /
'"

,',-
I

20

0 5 1510

Wsplit

40

30

-- T-- -------
I

I
I

I

I
I

I

20

0 s 1510

Wsplit

Figure 55. Height of BSP Tree vs. wsplit

108

dutchplate

20

bracket

Heur 1

20
- - - - - - - - - - Heurz

Heur3

- - - - - - - - - - Heur 4

(horizontal)

brush

20

so

height 40

30

polygons

polygons 1000

450

400

1200

1100

900

D)

s 15

109

dutchplate

20

bracket

HeuTl

20
HeuT2

10

""Iplll

...........

~
", \ '-'""\ /\ ~----~~-~---~--~---7,-- :"\,, ", --

""'~"~": " , ~~',',,v v ~-~

0 s 10
""Iplll

15

HeUT3

Heur4
(horizontal)

brush

:m

Figure 56. Number of Boundary Polygons in BSP Tree vs. ""Iplit

,
, , ,

- - .J.-~'="":_"',=:::"-:::':" =-c = ='~--=- = =

0 5 1510

""11111

420
I

'.
'.

400

I

'.

polygons 380

360

340
I
0

110

Figure 57. Two Different BSP Trees Describing the 'Clutchplate'

To illustrate how different the BSP trees describing identical sets can be, Figure 57

shows two different BSP tree representations for the "clutchplate" object. (The binary trees

in the figures in this chapter were drawn using the algorithm of Reingold and

Tilford[Rein81].) This first tree resulted from selecting the first polygon in the leftmost

primitive of the CSG tree at each stage; no attempt was made to find the "best" hyperplane.

In other words, the candidate set was of size I, and the test set of size O. The long string of

nodes at the root of the tree resulted from choosing hyperplanes that bound the object, and

define a convex set containing the entire object. This was due to the fact that the primitives

111

defining the outer boundary of the clutchplate occupied the leftmost positions in the tree.

The second tree was produced by using Heur2' with maximal test and candidate sets. (That

is, all polygons were tested against all others at each stage.) This tree is more well-balanced

than the first, as would be expected. Also note how the use of the two "balancing" heuristics

serves to localize the primitives into regions relatively high in the tree. The splitting caused

by the faces of each primitive is then localized.

In the above example, the use of heuristic Heur2 produced a BSP tree with fewer

boundary polygons (366 polygons) than the tree produced by simply choosing the "next" face

(434 polygons). In the example in Figure 58, however, this is not the case. By simply

choosing the "next" face at each stage, a tree with a fewer number of polygons results (at the

top of the figure, with 247 polygons) than if heuristic Heur2 is used (at the bottom of the

figure, with 314 polygons). This may be due to the particular geometry of the brush object.

Most of the splitting of polygons occurs near the center of the object, where all of the

primitives intersect. Choosing a single primitive at a time to contribute partitioning planes

encloses a portion of this region, creating a sort of "firewall" across which no plane may split

other polygons. This serves to localize the effects of splitting early in the process, reducing

the total number of (split) polygons.

The worst case number of polygons in a BSP tree is O(nd), where n is the number of

input faces and d is the dimension. However, the results obtained, even for relatively "bad"

cases such as the bracket and brush, are not as large as the worst case result. The brush

object, which contains a high number of intersecting primitives, has about a factor of 16

increase in the number of polygons when a heuristic is used. This performs the worst of the

objects studied. The bracket also has a fair amount of intersecting primitives, but shows only

a factor of 4 increase. The clutchplate has relatively few intersecting primitives, and the

number of polygons increases by a factor of 2.3.

112

Figure 58. Two BSP Trees Describing the 'Brush'

The same increase as that experienced with the clutchplate (2.5) was experienced as a

practical worst case in converting a B-rep to a BSP tree (no set operations) in our

implementation of that algorithm. The same practical bound was experienced by

Fuchs[Fuch83]. This suggests that the degree to which the primitives in a CSG representation

intersect is a major factor in the increase in the number of polygons.

Incremental evaluation

The algorithm for incremental set operations has been implemented on a Silicon

113

Graphics IRIS workstation. The configuration used has a 68020 CPU running a 16MHz, a

floating-point accelerator board, and 2 Mb of memory. The system runs a version of UNIX

based on System V. The IRIS uses eight "Geometry Engine" chips organized in a pipeline

that performs transformation and clipping of polygons. A separate graphics processor draws

(scan-converts) polygons into the frame buffer. This all makes for an extremely effective

polygon drawing system.

In the implementation, the user can interactively control the position of the viewpoint

and a "tool" object with the mouse. While positioning the tool object, the user is appraised

of its current position by evaluating a "cheap" union of the current object with the tool at its

current position, and displaying a visible surface rendering of the result. This is "cheap" in

the sense that we do not bother to re-evaluate boundary polygons in nodes of the tree that

split or are coplanar with faces of the tool object. For union, this re-evaluation would only

serve to eliminate faces in the interior or redundant faces on the boundary of the result of the

union. As these faces are obscured during the process of writing front-facing polygons in

back-to-front order (yielding the visible surface), and writing polygons to the frame buffer is

relatively inexpensive on the IRIS, this serves to reduce the amount of time needed to show

the current position of the tool.

Tree simplification is not performed during tool positioning. This is to prevent the

deletion of any part of the workpiece's BSP tree until the actual set operation is performed.

A list is kept of the leaves of the workpiece tree that are replaced by subtrees generated from

faces of the tool. Since the operation is set union, this will happen only at out-leaves of the

workpiece tree. When the user moves the tool again, this list is used to prune these subtrees,

replacing them with out-leaves. The "cheap" union is then performed with the tool at its new

position.

Once the tool is positioned, the user chooses a set operation to be performed. Having

114

done so, the result is evaluated, and the tree is displayed. Performing a set operation creates

a new tree; the old tree is kept in case the user decides to undo the operation.

The IRIS's three-button mouse is used for all user input. There are two basic modes

of interaction, one, "Viewing mode," in which the mouse position controls the viewing

position, and the other, "Tool mode," in which the mouse controls the x-y position of the

tool. The rightmost button is reserved for use by the window manager mex. Depressing this

button causes a "pop-up" menu to appear under the current cursor position. While keeping

the right mouse button down, the cursor can be moved over the menu. When the cursor is

positioned over the desired operation, releasing the mouse button causes the corresponding

action to be performed. Main menu items include:

View -- enter Viewing mode

Tool -- enter Tool mode

UNION -- perform a union operation with the tool at

the current position

INTERSECT -- perform an intersection operation

SUBTRACT -- perform a subtraction (workpiece -* tool)

drawtree -- draw the BSP tree as a binary tree in a subwindow

fix faces -- perform a glue operation in all hyperplanes

in hopes that some 2-d tree reduction

will take place, reducing the number of

polygons (usually incr~as~s their number)

Save -- save the current BSP tree on disk

Quit -- exit the program

The "View" and "Tool" menu items have sub-menus that are activated by moving the

cursor off the edge of the menu while keeping the right mouse button depressed. The

sub menu items for "View" toggle characteristics of the visible surface rendering. These

115

include:

edges -- highlighting of polygons edges

light -- recalculate shade of each polygon as the model

is rotated beneath a fixed light source

filled -- draw filled polygons

(edges=on and filled = off generates wireframe

drawings)

col or -- draw filled polygons with their individual colon

(color= off generate monochrome renderings)

rotate -- rotate the model at a constant rate

when in tool mode

While in "Tool" mode, one of several different sub-modes is in effect. In all sub-

modes, the mouse position controls the x and y position of the tool. The action that is

associated the left and middle mouse buttons depends on the current sub-mode:

"z-translate" -- the default, in which the left and middle

mouse buttons control the

z position of the tool.

"rotate"-- in which the buttons control rotation of the tool

about the x and z axes

"scale-all", "scale-x", "scale-y", "scale-z" -- where the buttons

control scaling about x, y, z, or all axes.

Other sub menu items reachable from the "Tool" entry in the ttlain menu include the

options:

"new" prompts for a new tool polyhedron

"newcolor" prompts for a new color for the tool

"vis" toggles the visibility of the tool

116

"constant" prompts for a set operation. Subsequently,

that set operation is performed for each

new position of the tool. "union" makes

the tool like a 3-d brush. "diff" makes

it like a cutting tool. Selecting "constant"

a second time turns it off.

"init" initializes the tool to unit scaling,

no rotation, and positioned at the origin.

For simple objects, moving the tool and generating visible surface renderings is done

at 15-30 frames per second. For the most complex object tested (about 2000 polygons), the

system generates frames at about 1 frame per second, most of this in the visible surface

phase. Evaluation of a set operation on this object takes about 6 seconds.

A 6 minute video tape was made demonstrating the IRIS implementation[Thib87a].

The tape includes segments from live interactive sessions.

Ray-tracine

The ray-tracer is written in a dialect of Pascal. It is based on a simple ray-tracer

written by Bill McAllister. Extensions to support CSG evaluation (along rays), arbitrary

quadric primitives, color, texture, and BSP trees were made.

The image in figure 59 was generated by ray-tracing a labeled-Ieaf BSP tree output by

the CSG evaluation program. The images in Figures 60 and 61 were generated by ray-tracing

labeled-Ieaf BSP trees. The multiple (botanical) trees in Figure 61 were generated by

performing transformations (rotations and translations) to a single boundary-augmented BSP

tree representing a single botanical tree[Aono84].

117

Figure 59. Ray-Traced Clutchplate

118

"

Figure 60. Ray-Traced Head

119

Figure 61. New York World's Fair

120

Performance

A series of tests were run to demonstrate that the BSP tree can yield performance

improvements over ray-tracing without any type of partitioning. The results are summarized

in Table S. The BSP tree was constructed in an octree-like fashion, cycling through the

dimensions, dividing along onc dimension with an axis-aligned plane at each level of the tree.

The objects used in the tests were spheres, five of of which were placed randomly within

each cell of the partitioning. As can be seen from the Table, running time increases linearly

with the number of objects when no partitioning is used, while the time requirement

increases more slowly when the BSP tree is used. Any reasonable implementation of a ray-

tracer must include some form of space partitioning in order to render any but the simplest

scenes. The simplest and most common approach is to use a hierarchy of bounding volumes,

usually spheres or ellipsoids. A comparison of the various existing techniques with the BSP

tree is major undertaking, left for future investigation.

TABLE 5. Run Times for Ray-Tracing an Unpartitioned Scene versus a Scene Partitioned
with a BSP Tree

number of number of with BSPtree without BSPtree
partitions objects (cpu minutes)

8 40 8 30
16 80 14 66
32 160 18 11964 320 21 237
128 640 30
256 1280 39
512 2560 46
1024 5120 55

121

Set Operations

Set operations can be evaluated for each ray by ray-casting, as outlined in Chapter ll.

This is done by combining the intersections of the ray with the objects in the scene. With this

technique, we can evaluate set operations on any primitives for which we have a method of

determining their intersection with the ray. In this implementation, this evaluation was

performed using a finite state automaton.

The image in Figure 62 shows a complex object evaluated by ray-casting. The space

shuttle is represented with a boundary-augmented BSP tree. The impressions in each block

were made with a subtraction operation (shuttle -* block).

The input to the automaton consists of the intersection points of the ray with the two

objects, sorted by distance from the ray end point. Each intersection point is marked to

indicate which operand it belongs to. The automaton outputs a 1 on a state transition to

indicate that the current intersection point is an intersection point with respect to the result of

the set operation, and a 0 to indicate that the current point is not in the result. The result is

then also a sorted list of intersection points, which could be used as input to another

evaluation.

States of the automaton reflect the classification of each line segment induced on the

ray by the intersection points with the two sets. ("On" classifications are not considered for

these line segments: an arbitrary decision is made to consider such tangent intersections as

lying on the exterior of the set.) Transitions correspond to intersection points.

Specifically, a state consists of three bits. The first bit indicates the classification of

the line segment with respect to the result of the set operation. For example, a 1 in the first

bit indicates the line segment is in the interior of the result. The setting of this bit is

determined by the particular set operation and the settings of the two remining bits. These

two bits indicate the classification of the line segment with respect to each operand. There

122

Figure 62. Shuttle Mold

are four states in each automaton, reflecting the fact that there are four possible ways to

123

B/1
BID

BID
B/1

BID
B/1

AID A/1 AID

u* n* -*

Figure 63. Automata for Evaluating 1D Set Operations

combine the two operands. The starting state for a particular evaluation is chosen based on

the location of the ray tail with respect to the two objects.

Figure 63 shows the automata for the (regularized) operations union, intersection,

and difference. Consider the automaton for union, for example. Suppose the ray tail is in

the exterior of both operands. This means the automaton starts in state 000, signifying that

we begin outside of both operands (the two rightmost bits) and outside of their union (the

left bit). If the first intersection along the ray belongs to operand A, we transition to state

110 (in A u' B, in A, out of B), and output a 1, indicating that this first point is an

intersection of the ray with A U' B.

If the ray intersects both objects at the same point, the automaton may output both

points (for intersection and difference). To handle this, the list of intersection points output

by the automaton should have any coincident points deleted.

124

Construction of BSP Trees with Hyperplanes that do not Embed Faces

As mentioned in Chapter ill, it is possible to construct BSP trees with hyperplanes

that do not embed faces of the object. One reason for doing so is to attempt to construct

balanced trees. This can be accomplished with a "median-cut" algorithm, similar to that used

to construct balanced k-d trees for point sets (Bent79). At each stage of the process, a

hyperplane is chosen that is orthogonal to the i-th coordinate axis. The axis to split at each

stage is chosen either by cycling through the d dimensions, as in the k-d tree(Bent79), or by

choosing the axis along which the current set of faces have the longest extent. The

hyperplane intersects this axis at the median value of the i-th coordinates of the vertices of

the current B-rep. (This median is found with the algorithm SELECT on pages 97-99 of

(Aho74).) A threshold is defined in terms of the number of faces in the current B-rep.

Below this threshold, hyperplanes that embed faces are used, as in procedure Build..BSPT.

Figure 64 shows two BSP trees representing a 50-face approximation of a sphere, one built

with the naive "face-at-a-time" approach, and the other with the median-cut algorithm with a

threshold of 8.

Another reason for using non-face-embedding hyperplanes is to construct a (convex)

bounding volume about the set represented by the BSP tree. The bounding volume can be

used to quickly determine when an object lies entirely outside of the set represented by the

BSP tree. This involves constructing a BSP tree describing the bounding volume, and rooting

the tree of interest at what would be the in-cell of the tree for the bounding volume. Note

that such hyperplanes would be removed by the BSP tree reduction rule that removes nodes

whose hyperplanes do not contain part of the boundary and have a trivial BSP tree (leaf) as a

child. Support for bounding such bounding volumes is implemented in the incremental set

operation system by simply disallowing tree reduction on the top 6 levels of the tree (used to

define an axis-aligned bounding box).

(a)

125

(b)

Figure 64. BSP Trees Built Using (a) Build_BSPT, and (b) the Median-Cut Algorithm

Information about the placement of polygons can be used to reduce the amount of

splitting that occurs. If it is known that the polygons are arranged in "rings," such that no

polygon crosses a given axis at certain values, a partitioning plane can be placed at that

position along the given axis without splitting any polygon. This is often the case for

polyhedra constructed from "slices," as is provided by most medical imaging systems such as

CT scans, as well as for parametrically described surfaces, such as the sphere in Figure 65.

For such objects, the first levels of the BSP tree can partition along the "ringed" axis without

introducing any additional polygons resulting from splitting. In the Figure, splitting happens

to only a few of the original retangular polygons, and a well-balanced tree is obtained. (The

top of the tree constitutes a bounding box about the sphere, two planes of which embed the

polar polygons (explaining why they are not split).)

Figure 65. A polyhedral Approximation to a Sphere and Its BSP Tree

126

127

CHAPTER VU

Conclusions

Overview

The Binary Space Partitioning tree has been presented as a novel representation for

polyhedra, and has been shown to be effective for several useful operations. The

representation allows for efficient point inclusion testing, volume and center-of-mass

calculations. Algorithms that use the BSP tree to evaulate set operations on polyhedra were

presented, and their efficacy shown in working implementations. Visible surface renderings

are easily generated from BSP tree representations. The unification of three important

aspects of any useful geometric modeling system in the BSP tree makes it an attractive

representation for use as an auxiliary representation (for user interaction) in general-purpose

solid modeling systems. These aspects are: modeling of and set operations on polyhedra,

providing a structure for efficient geometric searching, and visible surface rendering.

Directions for Future Work

The BSP tree can be applied to other, more specific applications. One such is "beam-

tracing," [Heck84] a technique similar to ray-tracing in which "bundles" of rays of polygonal

cross-section are reflected and refracted through the scene. This has also been proposed

[Dad082] as a technique for modeling propogation of "sound beams" in acousitical

environments. By modeling the environment in question with a BSP tree, and the beam as a

prism, a set intersection operation will determine the possible surfaces hit by the beam,

where this can be resolved by performing a visible surface operation on the result.

Issues in the automatic generation of BSP trees to partition scenes for the above

128

techniq ue as well as for classical ray-tracing deserve study.

The representation also promises to be useful in robotics, for problems of collision

detection. The obstacles can be modeled as a BSP tree, and the moving parts of the robot as

polyhedra. A non-null intersection result signals an intersection. For dynamic collision

avoidance, where a proposed motion is to be tested for possible collision, a polyhedron

modeling the volume swept out by the moving actuator is tested for intersection with the

environment. The BSP tree provides the additional benefit of easily generating visible

surface renderings of the simulated geometry.

Another straightforward application of the BSP tree technology is in medical

applications. One specific problem where it could be useful is in radiation treatment.

Directing a narrow beam of high intensity radiation at specific internal organs must be

concerned with avoiding other healthy organs to prevent possibly damaging them. This

would require a means of converting the cross-sections from CT-scans or other techniques

into a BSP tree. The beam would then be modeled as a polyhedron, and intersections with

organs to be avoided could be tested. This would allow the radiologist to plan the beam

placement for the most effective treatment. One such system [Mosh86] requires visual

identification of intersections with targeted tissues.

Work remains to be done on many interesting and important theoretical issues

concerning BSP trees. A verage-case analysis of tree size and running times for the various

algorithms should provide more useful information than the worst-case results in[NayI81].

Such an analysis would be based on the geometry of polyhedra, and should serve to better

characterize the trees actually realized.

The BSP tree itself can be generalized to use partitioning sets other than hyperplanes:

arbitrary functionals that define halfspaces can be used. For example, ellipsoids or other

closed volumes could be used to organize space in a manner similar to that obtained in

129

bounding-volume schemes for ray-tracing. A drawback of this generalization would be the

loss the convexity properties of cells and sub-hyperplanes maintained by use of hyperplanes.

The use of more general partitioning sets should not invalidate the basic algorithms for

classification and set operations, however, other than complications due to the loss of

convexity.

130

APPENDIX

Findin~ the Intersection of a Line Seiment and a Hyperplane

A point x is a dxl column vector. The normal to a hyperplane H is a bd row vector
a. The hyperplane is

{x: aex = ad+l}
Using the parametric form, the line segment pq is

{x: x = p + tT, OStSl},
where r = if - p.

Substituting gives
ae(p + tT) = ad+l

Solving for t yields
ad+l - Dep

t=
aer

The coordinates of the intersection point are obtained by substituting this value for t
into the parametric form for pq. Note that if t is not in the interval (0,1), then the relative
interior of the line segment does not intersect H.

[Ah074]

[Ambu86]

[Aon084]

[Athe83]

[AyaI85]

[Baum74]

[Bent79]

[Brai80]

[Brai75]

[Carl85]

[Carl87]

[Cohe79]

[Coxe63]

[Dad082]

[Dipp84]

131

BmLIOG RAPHY

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman. Tht! Dt!sign and
Analysis oJ Computt!r Algorithms. Reading, Mass.: Addison-Wesley, 1974.

Ambum, Phil, Eric Grant, and Turner Whitted. "Managing Geometric
Complexity with Enhanced Procedural Models." COMPUTERGRAPHICS20, no. 4
(August 1986).

Aono, Masaki, and Tosiyasu L. Kunii. "Botanical Tree Image Generation."
IEEE COMPUTERGRAPHICSAND APPUCATIONS(May 1984): 10-34.

Atherton, Peter R. "A Scan-line Hidden Surface Removal Procedure for
Constructive Solid Geometry." COMPUTERGRAPHICS17, no. 3 (July 1983): 73-
82.

Ayala, D., P. Brunet, R. Juan, and I. Navazo. "Object Representation by
Means of Nonminimal Division Quadtrees and Octrees." ACM TRANSACTIONSON
GRAPHICS4, no. 1 (January 1985): 41-59.

Baumgart, B. G. "Geometric Modeling for Computer Vision." REPORT NO.
AIM-249, STAN-CS-74-463, Stanford Artificial Intelligence Laboratory, Stanford
Univeristy, Stanford, California, October 1974.

Bentley, Jon Louis, and Jerome H. Friedman. "Data Structures for Range
Searching." COMPUTINGSURVEYS11, no. 4 (December 1979): 397-409.

Braid, I. C., R. C. Hillyard, and I. A. Stroud. "Stepwise Construction of
Polyhedra in Geometric Modeling." In Matht!matical Mt!thods in Computt!r
Graphics and Dt!sign, ed. K. W. Brodlie, 123-141. London: Academic Press,
1980.

Braid, I. C. "The Synthesis of Solids Bounded by Many Faces."
COMMUNICATIONSOFTHEACM18, no. 4 (April 1975): 209-216.

Carlbom, Ingrid, Indranil Chakravarty, and David Vanderschel. "A
Hierarchical Data Structure for Representing the Spatial Decomposition of 3-D
Objects." IEEECOMPUTERGRAPHICSANDAPPUCATIONS(April 1985): 24-31.

Carlbom, Ingrid. "An Algorithm for Geometric Set Operations Using Cellular
Subdivision Techniques." IEEE COMPUTERGRAPHICSAND APPUCATIONS(May
1987): 44-55.

Cohen, Jacques, and Timothy Hickey. "Two Algorithms for Determining
Volumes of Convex Polyhedra." JOURNALOF THE ACM 26, no. 3 (July 1979):
401-414.

Coxeter, H. S. M. Convt!xPolytopt!s. New York: Macmillan, 1963.

Dadoun, Norm, David G. Kirkpatrick, and John P. Walsh. "Hierarchical
Approaches to Hidden Surface Intersection Testing." GRAPHICSINTERFACE'82
(1982): 49-56.

Dippe, Mark, and John Swensen. "An Adaptive Subdivision Algorithm and
Parallel Architecture for Realistic Image Synthesis." COMPUTERGRAPHICS 18,

[Doct81]

[East79]

[Edah84]

[Fole83]

[Four82]

[Fuch83]

[Fuch80]

[Full75]

[Gigu85]

[Glas84]

[Heck84]

[Hunt79]

[Jack80]

[John84]

[Kirk83]

[Laid86]

[Lass83]

132

no. 3 (July 1984): 149-158.

Doctor, Louis J., and John G. Torborg. "Display Techniques for Octree-
Encoded Objects." IEEE COMPUTERGRAPHICSAND APPUCATIONS(July 1981):
29-38.

Eastman, Charles, and Kevin Weiler. "Geometric Modeling Using the Euler
Operators." PROCEEDINGS1ST ANNUAL CONFERENCEON COMPUTERGRAPHICSIN
CAD/CAM syg'EMS, Mrr (April 1979).

Edahiro, Masato, Iwao Kokubo, and Takao Asano. "A New Point-Location
Algorithm and Its Practical Efficiency -- Comparison with Existing Algorithms."
ACM TRANSACTIONSON GRAPHICS3, no. 2 (April 1984): 86-109.

Foley, James D., and Andries Van Dam. Fundam~ntals of Int~ractiv~ Comput~r
Graphics. Reading, Massachusetts: Addison-Wesley, 1983.

Fournier, Alain, Don Fussell , and Loren Carpenter. "Computer Rendering of
Stochastic Models." COMMUNICATIONSOF THE AcM 25, no. 6 (June 1982): 371-
384.

Fuchs, Henry, Gregory D. Abram, and Eric D. Grant. "Near Real-Time
Shaded Display of Rigid Objects." COMPUTERGRAPHICS17, no. 3 (July 1983):
65-72.

Fuchs, H., Z. Kedem, and B. Naylor. "On Visible Surface Generation by a
Priori Tree Structures." COMPUTERGRAPHICS14, no. 3 (June 1980).

Fuller, Buckminster R. Synergetics: Explorations in th~ Geometry of Thinking.
New York: Macmillan,1975.

Gigus, Ziv. "Binary Space Partitioning for Previewing UNIGRAFIX Scenes."
REPORT NO. UCBlCSD86/280, Computer Science Division (EECS), University
of California, Berkeley, California 94720, December 1985.

Glassner, Andrew S. "Space Subdivision for Fast Ray Tracing."
COMPUTERGRAPHICSANDAPPUCATIONS(October 1984): 15-22.

Heckbert, Paul S., and Pat Hanrahan. "Beam Tracing Polygonal Objects."
COMPUTERGRAPHICS18, no. 3 (July 1984): 119-127.

IEEE

Hunter, Gregory M., and Kenneth Steiglitz. "Operations onImages Using Quad
Trees." IEEE TRANSACTIONSON PATI'ERN ANAI:YSlS AND MACHINE INTElLIGENCE
PAMI-l, no. 2 (Apri11979): 145-153.

Jackins, Chris L., and Steven L. Tanimoto. "Oct-Trees ana Their Use in
Representing Three-Dimensional Objects." COMPUTER GRAPHICS AND IMAGE
PROCESSING14 (1980): 249-270.

Johnson, Robert H. Solid Modeling: A Stat~-of-the-Art R~port. Chestnut Hill,
Massachusetts: CAD/CAM ALERT, Management Roundtable, Inc., 1984.

Kirkpatrick, David. "Optimal Search in Planar Subdivisions." SIAM JOURNALOF
COMPUTING12, no. 1 (February 1983): 28-35.

Laidlaw, David H., W. Benjamin Trumbore, and John F. Hughes.
"Constructive Solid Geometry for Polyhedral Objects." COMPUTERGRAPHICS
20, no. 4 (August 1986): 161-170.

Lasserre, J. B. "Volume of a Convex Polyhedron in R"." JOURNALOF

[Lay82]

[Lee82]

[Levi76]

[Levi79]

[Mant84]

[Mant82]

[Mant83]

[Meag82]

[Mitc87]

[Mort85]

[Mosh86]

[Nava86]

[NayI81]

[NayI86]

[Prep85]

[Putn86]

133

OF1'IMIZATIONTHEORYANDAPPUCATIONS39, no. 3 (March 1983): 363-377.

Lay, Steven R. Conv~%S~ts and Th~ir Applications. New York: John Wiley
and Sons, 1982.

Lee, Yong Tsui, and Aristides A. G. Requicha. "Algorithms for Computing
the Volume and Other Integral Properties of Solids. I. Known Methods and
Open Issues." COMMUNICATIONSOF THE ACM25, no. 9 (September 1982): 635-
641.

Levin, Joshua. "A Parametric Algorithm for Drawing Pictures of Solid Objects
Composed of Quadric Primitives." COMMUNICATIONSOF THE ACM 19, no. 10
(October 1976): 555-563.

Levin, Joshua Zev. "Mathematical Models for Determining the Intersections of
Quadric Surfaces." COMPUTERGRAPHICSAND IMAGE PROCESSING11 (1979): 73-
87.

Mantyla, Martti. "A Note on the Modeling Space of Euler Operators."
COMPUTERVISION, GRAPHICS.AND IMAGEPROCESSING26 (1984): 45-60.

Mantyla, Martti, and Reijo Sulonen. "GWB: A Solid Modeler with Euler
Operators." IEEE COMPUTERGRAPHICSAND APPUCATIONS(September 1982): 17-
31.

Mantyla, Martii, and Markku Tamminen. "Localized Set Operations for Solid
Modeling." COMPUTERGRAPHICS17, no. 3 (July 1983): 279-288.

Meagher, D. "Geometric Modeling using Octree Encoding."
GRAPHICSANDIMAGEPROCESSING19 (June 1982).

Mitchell, Don P. "Generating Antialiased Images at Low Sampling Densities."
COMPUTERGRAPHICS21, no. 4 (July 1987): 65-72.

Mortenson, Michael E. G~om~tricMod~ling. New York: Wiley, 1985.

Mosher, Charles E. Jr., George W. Sherouse, Peter H. Mills, Kevin L. Novins,
Stepher M. Pizer, Julian G. Rosenman, and Edward L. Chaney. "THe Virtual
Simulator." 1986 WORKSHOPONINTERACTIVE3D GRAPHICS(Oct 23-241986).

Navazo, I., D. Ayala, and P. Brunet. "A Geometric Modeller Based on the
Exact Octtree Representation of Polyhedra." COMPUTERGRAPHICSFORUM5
(1986): 91-104.

COMPUTER

Naylor, Bruce F. "A Priori Based Techniques for Determining Visibility
Priority for 3-D Scenes." PH.D. THEsIs, University of Texas at Dallas, May
1981.

Naylor, Bruce F., and William C. Thibault. "Application of BSP Trees to Ray-
Tracing and CSG Evaluation." TECHNICALREPORT GIT-ICS 86/03, School of
Information and Computer Science, Georgia Institute of Technology, Atlanta,
Georgia 30332, February 1986.

Preparata, Franco P., and Michael lan Shamos. Computational G~omdry: An
Introduction. New York: Springer-Verlag, 1985.

Putnam, L. K., and P. A. Subrahmanyam. "Boolean Operations on n-
Dimensional Objects." IEEECOMPUTERGRAPHICSANDAPPUCATIONS(June 1986):
43-51.

[Rein81]

[Requ85]

[Requ80]

[Requ83]

[Requ78]

[Roge85]

[Roth82]

[Rubi80]

[Same84]

[Sarr83]

[Schu69]

[Thib87]

[Thib87a]

[Thom87]

[Tilo84]

[Wegh84]

[Weil85]

134

Reingold, Edward M., and John S. Tilford. "Tidier Drawings of Trees." IEEE
TRANSATIONSON SOFTWAREENGINEERINGSE-7, no. 2 (March 1981): 223-228.

Requicha, Aristides A. G., and Herbert B. Voelcker. "Boo lean Operations in
Solid Modeling: Boundary Evaluation and Merging Algorithms." PROCEEDINGS
OF THE IEEE 73, ~o. 1 (January 1985): 30-44.

Requicha, Aristides A. G. "Representations for Rigid Solids: Theory,
Methods, and Systems." COMPUTINGSURVEYS 12, no. 4 (December 1980): 437-
464.

Requicha. A. A. G., and H. B. Voelcker. "Solid Modeling: Current Status and
Research Directions." IEEE COMPUTERGRAPHICSAND APPliCATIONS(October
1983): 25-37.

Requicha. Aristides A. G., and Robert B. Tilove. "Mathematical Foundations
of Constructive Solid Geometry: General Topology of Closed Regular Sets."
TM-27A. Production Automation Project, University of Rochester, Rochester,
New York 14627, June 1978.

Rogers, D. F. Procedural Elements for Computer Graphics.
McGraw-Hill, 1985.

Roth, Scott D. "Ray Casting for Modeling Solids." COMPUTERGRAPHICSAND
IMAGEPROCESSING18 (1982): 109-144.

New York:

Rubin, Steven M., and Turner Whitted. "A 3-Dimensional Representation for
Fast Rendering of Complex Scenes." COMPUTERGRAPHICS14, no. 3 (July 1980):
110-116.

Samet, Hanan. "The Quadtree and Related Data Structures." ACM COMPUTING
SURVEYS16, no. 2 (June 1984): 187-260.

Sarraga, Ramon F. "Algebraic Methods for Intersections of Quadric Surfaces in
GMSOLID." COMPUTER GRAPHICS AND IMAGE PROCESSING 22 (1983): 222-238.

Schumacker, R. A., R. Brand, M. Gilli1and, and W. Sharp. "Study for
Applying Computer-Generated Images to Visual Simulation." AFHRL-TR-69-14,
U.S. Air Force Human Resources Laboratory, 1969.

Thibault. William C., and Bruce F. Naylor. "Set Operations on Polyhedra
Using Binary Space Partitioning Trees." COMPUTERGRAPHICS21, no. 4 (July
1987).

Thibault, William C., and Bruce F. Naylor. Set Operations on Polyhedra Using
Binary Space Partitioning Trees: The Video.(February 1987) .

Thomas, D., D. S. Fox, and A. N. Netravali. Efficient Octree Building and
Tracing Techniques for High Speed Ray Tracing. AT&T Bell Laboritories, 1987.

Tilove, Robert. "A Null-Object Algorithm for Constructive Solid Geometry."
COMMUNICATIONSOFTHEACM27, no. 7 (July 1984).

Weghorst, Hank, Gary Hooper. and Donald P. Greenberg. "Improved
Computational Methods for Ray Tracing." ACMTRANSACTIONSON GRAPHICS3,
no. 1 (January 1984): 52-69.

Weiler, Kevin. "Edge-Based Data Structures for Solid Modeling in Curved-
Surface Environments." IEEE COMPUTERGRAPHICSAND APPliCATIONS(January
1985): 21-40.

[Whit80]

[Yann79]

[Yau83]

135

Whitted, Turner. "An Improved mumination Model for Shaded Display."
COMMUMCATIONSOF THE ACM 23, no. 6 (June 1980).

Yannakakis, M. Z., C. H. Papadimitriou, and H. T. Kung. "Locking policies:
safety and freedom for deadlock." PROCEEDINGS20TH ANNuAL SYMPOSIUMON
FOUNDATIONSOF COMPUTERSCIENCE (1979): 286-297.

Yau, Mann-May, and Sargar N. Srihari. "A Hierarchical Data Structure for
Multidimensional Digital Images." COMMUMCATIONSOFTHEACM26, no. 7 (July
1983): 504-515.

136

VITA

William Thibault was born on December 18, 1957, in New Orleans, Louisiana. He
received the B.S. in Computer Science at the University of New Orleans in 1981. Upon
entering Georgia Tech, he was awarded a President's Fellowship, and received the M.S. in
Information and Computer Science in 1985. He was a Consultant at AT&T Bell Laboratories
in Murray Hill, NJ for nine months during 1986 and 1987. He is a member of the
Association for Computing Machinery and SIGGRAPH.

